

Control of Advanced Divertors in NSTX-U and ITER

Activated Constraints

< 1.5 kV

< 48 kA

< 55 kA

< 55 kA

< 55 kA

< 52 kA

< 52 kA

Josiah Wai, Pat Vail, Egemen Kolemen and the NSTX-U team (jwai@pppl.gov) Department of Mechanical Aerospace Engineering, Princeton University

Motivation

Reduce heat flux to the divertors in NSTX-U and ITER

snowflake - secondary x-point placed next to primary x-point. x-divertor — secondary x-point placed near outer strike point.

- Snowflake is possible on NSTX-U [1], but coil currents too high for ITER [2].
- X-divertor is possible on ITER [3], but no studies on how to achieve transition.

- Maintain shape via isoflux method (minimizes flux error between plasma boundary and control points).
- Use reference tracking on the x-point positions.
- . NSTXU Linear Quadratic Integral control (LQI)
- ITER Model Predictive Control (MPC)

Dynamics Model

The vacuum vessel elements, poloidal field (PF) coils, and plasma are treated as toroidally looped circuits:

$$\begin{array}{ccc} v_s = R_s I_s + \dot{\Psi}_{ss,\ coil} + \dot{\Psi}_{ss,\ plasma} & & & & \\ & & & & & & \\ \dot{\psi} & & & & & & \\ \dot{\Psi}_{ss,\ coil} = M_{ss} \dot{I}_s & & & & & \\ \dot{\Psi}_{ss,slemme} \approx \frac{\partial \Psi_s}{\partial I_s} \Big|_{sq} \delta \dot{I}_s := X_{ss} \delta I_s \\ & & & & & \\ \text{Flux change due to induced currents.} & & \text{Flux change due to plasma motion. Computed} \end{array}$$

Matrix form of circuit equation gives state-space dynamics:

$$\begin{bmatrix} \delta v_s \\ 0 \end{bmatrix} = \begin{bmatrix} R_s & 0 \\ 0 & R_p \end{bmatrix} \begin{bmatrix} \delta I_s \\ \delta I_p \end{bmatrix} + \begin{bmatrix} M_{ss} + X_{ss} & M_{sp} + X_{sp} \\ M_{ps} + X_{ps} & M_{pp} + X_{pp} \end{bmatrix} \begin{bmatrix} \delta \dot{I}_s \\ \delta \dot{I}_p \end{bmatrix}$$

$$\hat{\delta} \dot{I} = A(t)\delta I + B(t)\delta v$$

Output Model

Control plasma current, x-point positions, strike point positions, and shape.

$$Z = \begin{bmatrix} I_p & r_x & z_x & r_{strike} & z_{strike} & \psi_{bry} & \psi_{cp \times 31} \end{bmatrix}^T$$

Write the output equation in the linearized frame (to match dynamics).

$$e = Z - Z_{target}$$

 $\delta e = \frac{\partial (Z - Z_{target})}{\partial I} \delta I \Leftrightarrow y = C(t)\delta I$

Flux response $\frac{\partial \psi}{\partial t}$ obtained via linearization to Grad-Shafranov equation [4].

NSTX-U Control

Control strategy: use linear quadratic integral (LQI) with set-point tracking on the xpoint positions. Use proportional control to maintain plasma shape

Set point tracking:

$$\begin{array}{ccc} Ax^* + Bu^* = 0 \\ Cx^* = r \end{array} \implies \begin{bmatrix} x^* \\ u^* \end{bmatrix} = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ I \end{bmatrix} r := \begin{bmatrix} F_{x^*} \\ F_{u^*} \end{bmatrix}$$

Control strategy: coil current limits and output constraints are a concern. Use Model Predictive Control (MPC) with target tracking.

Reference trajectory cost function:

$$J_{k} = \sum_{i=1}^{N} \left[(y_{k+i} - r_{k+i})^{T} Q_{i}(y_{k+i} - r_{k+i}) + u_{k+i-1}^{T} R_{i} u_{k+i-1} \right]$$

Use model dynamics and output equation to predict N steps into the future.

Cost function minimization simplifies to:

minimize
$$J_k = \hat{U}^T H \hat{U} + 2f^T \hat{U}$$

 $H := F^T \hat{Q}F + \hat{R}, \quad f := F^T \hat{Q}(Ex_k - \hat{r})$

ITER MPC Constraints

Coil #

PF1

PF2

PF3

PF5

- Constrained variables include the coil currents, applied coil voltages, power characteristics, and shape.
- Constraints written in the linearized reference frame, in terms of the optimization variable \hat{U}
- Example:

$$Gv \le g$$
 $v = v_0 + u$

$$\hat{G}\hat{U} \leq \hat{g} - \hat{G}\hat{v}_0$$
 (

P < 250 MW

51₀ < 3%

CP±± gap

Results

NSTX-U

 A time-variant plasma model coupled with LQI control can create the snowflake divertor and gives good tracking error (<1cm).

ITER

- . For a 10MA plasma, can transition to x-divertor while maintaining constraints.
- All physical constraints have been implemented except for series connection between CS1U and CS1L.

Future Work

- Identify the time-variant plasma models present in the NSTXU ramp-up phase, so that shape control can be implemented during ramp-up (allows for more consistent entry into H-mode.)
 - Implement series connection on ITER CS1U/L and identify under which conditions the x-divertor can still be created.

