Experimental identification of inter-ELM pedestal MTMs through edge current perturbations

by A. O. Nelson1,2*

with
F. M. Laggner1, A. Diallo1, D. R. Smith3, R. Shousha2, Z. A. Xing2, E. Kolemen1,2, and the DIII-D4 and UT-Austin Teams5

1 Princeton Plasma Physics Laboratory
2 Princeton University
3 University of Wisconsin, Madison
4 General Atomics
5 University of Texas, Austin

presented remotely at the
2021 TTF Pedestal Plenary
April 23rd, 2021

Email:
*anelson@pppl.gov
We present a direct, time-dependent experimental identification of low-n microtearing modes in the H-mode pedestal on DIII-D.
Outline

• Introduction
 – Microtearing modes

• Experimental procedure and observations
 – Goal: Induce extra edge current to probe pedestal modes

• Mode identification
 – Comparison of experimental modes with MTM/KBM characteristics
 • Transport fingerprints
 • Propagation direction
 • Mode frequency

• Discussion/Conclusions/Future Work
 – Pedestal modes are consistent with MTM characteristics
 – More analysis coming on GENE; possible extension into pedestal model
Introduction
Inter-ELM instabilities ubiquitous, limit pedestal growth

• Instabilities at the plasma boundary observed on many machines
 – MHD-like modes expected to play a major role in regulating profile gradients
 – Microinstabilities are highly correlated with inter-ELM profile recovery phases
 – Consistent physical picture does not yet exist

• Kinetic Ballooning Mode (KBM) likely play a role as a pedestal-limiting mode

• Micro-Tearing Mode (MTM) also evident in pedestal region

[F.M. Laggner, et. al., NME 2019]
Microtearing Modes (MTMs)

- MTMs are small scale tearing modes that require finite collisionality
- Driven unstable by ∇T_e projected onto helically-resonant radial magnetic perturbations
 at rational $q = m/n$
 - ∇T_e drives a parallel current
 - reinforces δB via Ampere’s law
- Multiple mechanisms:
 - Thermal drag force
 - Interaction between trapped/passing boundary layer
MTMs are more unstable when aligned with peak ω_{e^*}

- MTMs are:
 - Localized on a rational $q = m/n$ surface
 - Unstable at a given n when the rational surface aligns with the peak in the ω_{e^*} profile

- From gyrokinetics:
 - Evidence of MTMs on JET, AUG, DIII-D

- From RIP diagnostic:
 - Evidence of high-f MTMs on DIII-D

[Chen PoP, 2020]
Test for modes: shift q-profile via current perturbation

- **Experimental strategy:** use vertical oscillations to probe edge modes
- **Hypothesis:**
 - Decreased edge current moves q-profile inwards
 - Modes trapped to q-profile also move inwards
VARYPED predicts frequency response in MTMs

- MTMs are localized on a rational $q=m/n$ surface

- As pedestal recovers post-ELM, MTM frequency predicted to rise...

\[\omega_{dop} = \frac{nE_r}{RB_p} \]
\[\omega_* = k_\theta \rho_S C_s \left(\frac{1}{L_{Te}} + \frac{1}{L_{ne}} \right) \]
VARYPED predicts frequency response in MTMs

- MTMs are localized on a rational $q=m/n$ surface

- As pedestal recovers **post-ELM**, **MTM frequency predicted to rise**…

- But as current rises **post-jog**, **expected MTM frequency may fall!**
Experimental Procedure
Experimental procedure – scan induced edge current

- Reference discharge with low 10Hz natural ELM frequency

- Explored jogging parameter space:
 - Jogging duration scan
 - Jogging height scan
 - Jogging direction scan

- During the largest and fastest jogging events (with the largest change in edge current):
 - Edge mode frequency change

(a) Oscillation lengths on DIII-D

(b) Oscillation heights on DIII-D

(c) Oscillation directions on DIII-D
Largest jogs lead to inverted mode chirping!

- During the **largest and fastest** jogging events:
 - Edge mode frequency change
 - Inversion of chirping behavior

- Chirped modes identified as: $n = 3, 4, 5$

- Core modes (black) and modes inside the pedestal top (blue) unaffected
Chirped mode only exists in edge BES channels
- Amplitude peaks in pedestal region

From magnetics, clear \(n \)-number identification
- 60 kHz \(\rightarrow \) \(n = 3 \)
- 115 kHz \(\rightarrow \) \(n = 5 \)
- \(m \)-number unclear, but large!

Modes localized at the edge of the plasma, at \(q \geq 5 \)
Mode Identification
Micro-tearing modes have many properties:

- Electromagnetic [Hazeltine 1975] ✓
- Long-wavelength modes \(k_\theta \rho_s < 1 \) [Doerk 2012] ✓
- Frequency close to electron diamagnetic frequency
 \[\omega_{e*} = k_\gamma \rho_s c_s \left(\frac{1}{L_{ne}} + \frac{1}{L_{Te}} \right) \] [Hatch 2021]
- Frequencies in the electron diamagnetic direction [Hatch 2021]
- Driven by electron temperature gradient [Gladd 1980]
- Causes almost exclusively electron thermal transport
 \((D_e/\chi_e \approx 1/10) \) [Kotschenreuther 2019]
- Requires finite collisionality/resistivity [Drake 1980] ✗
- Growth rate depends non-monotonically on collisions [Chen 2020] ✗
- Saturates as \(|\delta B_r/B| \sim \rho_e/L_{Te} \) [Chen 2020] ✗
- Mode can peak anywhere (top/bottom in [Hatch 2021]) ✗
Mode frequency consistent with MTM predictions

- **Normal ELM:**
 - Up-chirp in $n = 3$ and $n = 5$ modes due to inter-ELM gradient recovery

 \[\omega_{MTM}(\psi_n) = \omega_{dop}(\psi_n) + \omega_{*e}(\psi_n) \]

- **Qualitative and quantitative agreement with magnetics!**
Mode frequency consistent with MTM predictions

- Jogging ELM:
 - Down-chirp in $m/n = 16/3$ MTM due to motion of q-profile during gradient recovery

- Qualitative and quantitative agreement with magnetics!
Mode frequency fully consistent with MTM predictions

![Graph showing mode frequency comparison with predictions](image-url)
Micro-tearing modes have many properties:

- Electromagnetic [Hazeltine 1975] ✔
- Long-wavelength modes \(k_\theta \rho_s < 1 \) [Doerk 2012] ✔
- Frequency close to electron diamagnetic frequency
 \[\omega_{e^*} = k_y \rho_s c_s \left(\frac{1}{L_{ne}} + \frac{1}{L_{Te}} \right) \] [Hatch 2021] ✔
- Frequencies in the electron diamagnetic direction [Hatch 2021]
- Driven by electron temperature gradient [Gladd 1980]
- Causes almost exclusively electron thermal transport \(D_e/\chi_e \approx 1/10 \) [Kotschenreuther 2019]
- Requires finite collisionality/resistivity [Drake 1980]
- Growth rate depends non-monotonically on collisions [Chen 2020]
- Saturates as \(|\delta B_r/B| \sim \rho_e/L_{Te} \) [Chen 2020]
- Mode can peak anywhere (top/bottom in [Hatch 2021])
Frequencies in the **electron diamagnetic direction** in plasma frame
- Confirmed with BES

Maximum $n=3$ doppler shift

magnetics (\vec{B})
Mode saturation with ∇T_e and ∇P_e

- Amplitude of magnetic fluctuations consistent with ∇T_e (MTM-like)

- Due to fast density recovery timescale, also consistent with ∇P_e (KBM-like)

- MTM amplitude also dependent on offset between ω_* peak and rational surface
 - Amplitude change after saturation
GYROKINETIC FINGERPRINTS: [Kotschenreuther, et. al., NF, 2019]

MTM-like: \(D_e / \chi_e \approx 1/10 \)

KBM-like: \(D_e / \chi_e \approx 2/3 \)

UEDGE and TRANSP simulations:

- Transport is **predominantly MTM-like near separatrix!**
- Significant uncertainty from unknown neutral profile – scanned
Micro-tearing modes have many properties:

- Electromagnetic [Hazeltine 1975]
- Long-wavelength modes ($k_\theta \rho_s < 1$) [Doerk 2012]
- Frequency close to electron diamagnetic frequency
 \[\omega_{e^*} = k_y \rho_s c_s \left(\frac{1}{L_{ne}} + \frac{1}{L_{Te}} \right) \] [Hatch 2021]
- Frequencies in the electron diamagnetic direction [Hatch 2021]
- Driven by electron temperature gradient [Gladd 1980]
- Causes almost exclusively electron thermal transport
 \(D_e / \chi_e \approx 1/10 \) [Kotschenreuther 2019]
- Requires finite collisionality/resistivity [Drake 1980]
- Growth rate depends non-monotonically on collisions [Chen 2020]
- Saturates as $|\delta B_r / B| \sim \rho_e / L_{Te}$ [Chen 2020]
- Mode can peak anywhere (top/bottom in [Hatch 2021])
Conclusions
Low-\(n\) inter-ELM pedestal modes observed on DIII-D

- Low-\(n\) magnetic modes observed near the edge in a series of DIII-D discharges
- Similar to:
 - Category 1 modes from [Laggner NME 2019]
 - Washboard modes on JET [Perez PPCF 2004]
 - Other QCFs on DIII-D [Diallo PoP 2015]
 - Pedestal MTMs on JET [Hatch NF 2021]
 - 60kHz modes on AUG [Neuhauser NF 2008]
 - 100kHz modes on EAST [Gao PST 2013]
Low-\(n\) inter-ELM modes on DIII-D consistent with MTMs

- Modes are experimentally consistent with MTM characteristics!
 - Propagation in the electron diamagnetic direction
 - Cause almost exclusively electron thermal transport \((\chi_e \gg D_e)\)
 - **Dynamical evolution of mode frequency** agrees with predicted MTM frequency \((f_{NTM} \sim f_{dop} + f_{e})\) at rational \(q\)-surface in pedestal.