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Liquid Metal Plasma-Facing Components
(LM-PFCs)

e Alternative to solid plasma-facing

components in fusion reactors
o Enables the exposure to large heat-fluxes (on the
order of 10 MW/m?) 1!
o  Provides self-healing surface to avoid radiation
damage and thermal stresses 1/

® Investigating free-surface, liquid-metal flows
and Magnetohydrodynamic (MHD) effects
® Analysis has mainly focused on uniform

magnetic field, now need to look at gradient | S T P e =
m agnetic fleld (B) regions Distance away from inner radius of outboard divertor(cm)
O Q@Gradient B exists in to_kamak dive.r_tor regions Divertor region magnetic field
o  Could produce undesirable conditions ©! strengths in NSTX 13
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LMX-U Experiment Setup

: A ____FElectromagnet ____
® Rotary gear pump to circulate the ’gasl

liquid metal (galinstan): 0-25 L/min

e Magnetic field from electromagnet:
magnetic flux density of 0-0.33 T

e Conductive liner (2 mm thick copper)

® Laser-sheet measurements with CCD
camera for surface height
calculations
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Gradient Magnetic Field in LMX
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O)

Surface Height Possibly Affected by B Gradient

Heights of the LM surface,
with the magnet at 0, 0.2,

0.3T

Positive B gradient by inlet

o Large heightincrease from Q0T

Negative B gradient by outlet

o  Small height decrease from O T
MHD Lorentz force leads to
MHD drag
Impact on pileup could be
from both gradient and
uniform B
Surface stable despite
gradient
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Gradient B Effect on Average Velocity (3 regions)

e 3 regions of B gradient:

35
positive, zero, and negative R %g
e Calculated using laser heights e B!
and volumetric flow rate £ pg| 12 02T Gradient 8 %;f i -
; . F N 1 588 £
® |Inverse relationship between Sl oy L geET TN S
average velocity and surface 2k o o 5
height, therefore: 2 el , &
o Large average velocity §10 E ; ;::-“" 1 g
decrease from O T in positive B Z e 2 °"°"”"'-5::;:., a
gradient region 5 ""“: = . u—§_
o Small average velocity increase | | | | | :' 118
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Gradient B Effect on Surface Velocity (+ gradient region)

35

e Calculated using particle/bead

9)

tracking along surface at inlet

region (positive B gradient)
o  With no magnetic field, surface
velocity = average velocity
o  With magnetic field, surface
velocity > average velocity, and
surface velocity increased with
increasing magnetic field

Surface accelerated while core
region is slowed
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Conclusions

® Successfully ran experiments in B field gradient on LMX
e Measured B field and B field gradient are close to that of NSTX

e Surface accelerates, core region slows with applied magnetic field
o  Could be beneficial for heat flux transport or surface refresh for recycling control

e \With available data, cannot yet separate the effects of the magnetic field

gradient from the effects of overall MHD drag
o  Will complete additional experiments to test these effects individually
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e Simulations of open surface flow with gradient B
o  Using COMSOL, ANSYS Fluent, or OpenFoam
e Designs for additional for B gradients with X Position
o B changing as 1/R with 1/R change in channel width
o Linearly changing B along whole channel
e More measurements techniques
o New laser

o Ultrasound probe
O  Pressure measurements

e Investigating effect of changing B with time (dB/dt)
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