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Motivation

Liquid Metal Plasma-Facing Components 
(LM-PFCs) 
● Alternative to solid plasma-facing 

components in fusion reactors 
○ Enables the exposure to large heat-fluxes (on the 

order of 10 MW/m2) [1]

○ Provides self-healing surface to avoid radiation 
damage and thermal stresses [2]

● Investigating free-surface, liquid-metal flows 
and Magnetohydrodynamic (MHD) effects 

● Analysis has mainly focused on uniform 
magnetic field, now need to look at gradient 
magnetic field (B) regions 
○ Gradient B exists in tokamak divertor regions
○ Could produce undesirable conditions [3]
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Divertor region magnetic field 
strengths in NSTX [3]
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LMX-U Experiment Setup

● Rotary gear pump to circulate the 
liquid metal (galinstan): 0-25 L/min

● Magnetic field from electromagnet: 
magnetic flux density of 0-0.33 T

● Conductive liner (2 mm thick copper)
● Laser-sheet measurements with CCD 

camera for surface height 
calculations 
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Gradient Magnetic Field in LMX

● Magnetic Flux Density 
measurements taken at 
midpoint across channel 
length

● Gradient under 
consideration is the B 
gradient over the X 
Position 
○ (along the flow)

● Gradient B over Y and Z 
Positions only varies ~5%
○ (width and height) 
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Surface Height Possibly Affected by B Gradient

● Heights of the LM surface, 
with the magnet at 0, 0.2, 
0.3T 

● Positive B gradient by inlet
○ Large height increase from 0 T

● Negative B gradient by outlet 
○ Small height decrease from 0 T

● MHD Lorentz force leads to  
MHD drag

● Impact on pileup could be 
from both gradient and 
uniform B 

● Surface stable despite 
gradient
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Gradient B Effect on Average Velocity (3 regions) 

● 3 regions of B gradient: 
positive, zero, and negative

● Calculated using laser heights 
and volumetric flow rate

● Inverse relationship between 
average velocity and surface 
height, therefore: 
○ Large average velocity 

decrease from 0 T in positive B 
gradient region

○ Small average velocity increase 
from 0 T in negative B gradient 
region
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Gradient B Effect on Surface Velocity (+ gradient region)

● Calculated using particle/bead 
tracking along surface at inlet 
region (positive B gradient)
○ With no magnetic field, surface 

velocity ≈ average velocity
○ With magnetic field, surface 

velocity > average velocity, and 
surface velocity increased with 
increasing magnetic field 

● Surface accelerated while core 
region is slowed
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Conclusions 

● Successfully ran experiments in B field gradient on LMX 
● Measured B field and B field gradient are close to that of NSTX 
● Surface accelerates, core region slows with applied magnetic field

○ Could be beneficial for heat flux transport or surface refresh for recycling control

● With available data, cannot yet separate the effects of the magnetic field 
gradient from the effects of overall MHD drag
○ Will complete additional experiments to test these effects individually
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Future Work 

● Simulations of open surface flow with gradient B
○ Using COMSOL, ANSYS Fluent, or OpenFoam

● Designs for additional for B gradients with X Position
○ B changing as 1/R with 1/R change in channel width
○ Linearly changing B along whole channel

● More measurements techniques 
○ New laser 
○ Ultrasound probe
○ Pressure measurements

● Investigating effect of changing B with time (dB/dt)
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