LMX-U studies: model validation and development of the divertorlets concept

Egemen Kolemen, Prof. Princeton Univ./PPPL

With Z. Sun (PPPL), B. Wynne (PU), F. Saenz (PU), J. Al-Salami (Kyushu University)
PPPL – Japan Collaboration on LM

1. Koji Kusumi (Kyoto Univ.): Ran Experiments at LMX-U (Built mini-LMX in Japan)

2. Shoki Nakamura (Kyoto Univ.): Ran Experiment at LMX-U – Adv. Tomoaki Kunugi

3. Jabir Al-Salami (Kyushu Univ.): Simulations with LMX-U data – Adv. Kazuaki Hanada

4. Adam Fisher (Princeton Univ.): Ran Experiments at Oroshhi-2, Japan
Overview

1. LM flow in open channel: Experiment + Simulations

2. Divertorlets: Experiment + Simulations

3. Bonus: Cassette configuration
Flowing Liquid Metal R&D without Plasma

- LMX operating at PPPL (Kolemen Group)
- **Aim**: Understand LM flow at small scale
- Developing diagnostics and control for LM flow
 - Surface waves: Measurement and stabilization
 - Heat transfer: Enhance mixing using vortex generators
 - New Divertor Ideas: jxB forces to control of the LM flow and pumping

LMX publications by Kolemen group:
1. Kusumi, FEDC 111 1193 (2016)
2. Kusumi, FEDC 72,4, 796 (2017)
8. Hvasta. FST (2020)
14. Saenz, Nucl. Fusion, Accepted, (2022)
LMX platform

- Rotary gear pump to circulate Galinstan
- B=0-0.33 Tesla
- Height-adjustable planar nozzle at inlet allows the inlet flow depth and speed to be changed for a given flow rate
 - Nozzle height range: 0-20mm
 - No nozzle, LM enters the channel like a fountain

- Channel liner: acrylic base
 - Width: 109-acrylic(Cw=0)

- Inclination angle range: 0-6 deg.

Movable channel
Magnetic field distribution

- Electromagnetic edge: 0-740mm
- Uniform region: ~130mm-610mm
- Peak Grad B: X=-40 and X=780mm, ~1.3T/m, NSTX grad Bt ~0.4T/m
- Symmetric
Experiment to study MHD Drag

- Case 1: channel covers two Grad_B peaks
- Case 2: move channel close to the uniform region, nozzle applied, one Grad_B peak, less fringe
- Case 1: Brass, SS, Cu, and plastic
 - Electric conductivity (10.8E6 Siemens/m) Cu=58.7, Brass=17, SS316=1.32, Galinstan~3.46, Li 10.8
- Case 2: Brass and SS liners
MHD effect observed with Brass liners

- Nozzle vertical ~10mm, nozzle exit position x=-30mm, 16.3L/min, B~0.3T vs 0

- Hydraulic jump (HJ) near the nozzle exit without magnetic
 Re~5200; Fr=0.82(nozzle), 0.37(X=85mm)

- HJ disappears with B~0.3T
 Ha~590, Re~4270

- Deformed surface, similar as the non-nozzle experiment
Magnetic strength affects the LM pile up

Brass wall

Measurement location:
X~85mm

Same flow rate

Nozzle vertical gap~5mm

0.3T(Ha~594) $\Delta h \sim 16$mm

0.2T(Ha~376) $\Delta h \sim 7.5$mm

$B^2 \sim 2.23X$, $\Delta h \sim 2.1X$

Turn on the magnet
Higher flow rate \rightarrow larger liquid height change

Height measurement location $X \approx 5\text{mm}$

Brass wall

$B \approx 0.3\text{T}$

Flow rate ≈ 14.1: $\Delta h = 15\text{mm}$

Flow rate ≈ 20.7: $\Delta h = 16.5\text{mm}$
Nozzle gap has minor effect on the LM height

- Nozzle gap=5 and 10mm
- Height measurement location X~85mm
- Brass wall
- B~0.3T
- Flow rate~ 16.3L/min

Turn on the magnet
Occurrence of hydraulic jumps makes it difficult for the nozzle gap to control flow velocity

B=0: Nozzle gap~4.5mm, Jump position~130mm

No HJ with magnetic field

Hydraulic jump close to the nozzle exit

Fixed flow rate
LM flow after the HJ looks smooth

No magnetic; 16.3L/min; nozzle=10mm, full width flow; uniform height along width
Material conductivity is a key factor for LM thickness

Case 1, B=0.3T, 16.3L/min, no nozzle

Electric conductivity (10.\text{E}6 Siemens/m) Cu=58.7, Brass=17, SS316=1.32, Galinstan≈3.46, Li 10.8

Closed flow:

\[c_w = \frac{t_w \sigma_w}{b \sigma} \]

\[\Delta p = \lambda \frac{l}{2b} \frac{\rho U_m^2}{2} \frac{\lambda}{\lambda_0} = \frac{1}{3} \frac{c_w}{c_w+1} H a^2 \]
OpenFoam simulations in reasonable agreement with experimental results

2.36mm Cu
No nozzle
Channel -365mm
Flow rate ~16.3L/min
Full 3D MHD
Some Thoughts

- MHD drag leads to liquid to pile up at the nozzle for open channel flow with walls
 1. Nozzle height does not seem to effect this much
 2. Nozzle distance to the magnetic field does not seem to effect this much
 3. Bernoulli type of equation can explain this behavior
 4. Simulations with no hand tuned knobs can reproduce this result

- Next, I will present two ideas to overcome this issue:
 - Divertorlets
 - Running currents between walls/cassette
Non-evaporative LM divertor is needed for low-recycling regime tokamak

Issues:
1) Safety issues related to a high lithium inventory;
2) The power requirement for pumping of the lithium against MHD drag;
3) The stability of open channel LM flow in high speeds under MHD forces; and
4) Separation of tritium from LM.

We need
• Less power requirement
• Less Li inventory

Solution:
• Alternative designs

LMX as testbed for novel Divertor Design for Low-Recycling Regime Tokamak
Can we reduce velocity requirements?

- **Non-evaporative** LM divertor requires fast flow \sim1-20 m/s
- This is for a flow across standard length divertor (10s cm)
- Can we reduce the speed?
 - Less power need
 - Less Lithium in the reactor
Divertorlets (Fisher, Saenz, Sun)

\[t_{cr} = \left(\frac{\Delta T}{2q} \right)^2 \pi k \rho c_p \]

\[v = \frac{L}{t_{rc}} \]

- ↓ L \(\rightarrow\) ↓ v (m/s \(\rightarrow\) cm/s)
- Reduce drag, reduce splashing
- Possible to use simpler flowing setups
- Looking at many options
- Mainly use of jxB
- Divertorlet: \(J_{pol}\) that runs through LM and metal \(\Rightarrow\) Induces GradP between channels

1) Fisher et al. NME 2020, 2) Saenz et al., Experimental validation of the toroidal divertorlets concept NF 2022
Divertorlets prototype for experiments
Experimental tests of divertorlets in LMX

- Peak-valley deformation on the surface
- For smaller channel size, surface tension should get rid of deformations
Simulation Results

- COMSOL simulations confirmed the desired flow loop around slats.
- Average upward velocities were compared to experimental results.
- Simulations with heat flux at free surface show stable operation.
Simulation vs. Experiments

\[\|U\| \approx \sqrt{2g\Delta h} \]

\[U \text{: Velocity field} \]

\[U_{\text{avg}} \text{ (m/s)} \]

COMSOL: F. Saenz; OpenFOAM: J. Al-Salami
Analytical model

\[\Delta P_{j \times B} - \Delta P_{\text{visc}} \approx 0 \]

\[\Delta P_{j \times B} \approx (\Delta j_0)_{\text{avg}} B \cdot h_s + \sigma \int_C \left(E_i + U \times B \right) \times B \cdot dl \]

\[\Delta P_{\text{visc}} \approx \frac{1}{2} \rho U^2 \left[\left(\frac{A_0}{A_c} \right)^2 (C_D)_{\text{conds}} + 2(C_D)_{\text{branch}} \right] \]
Projections of divertorlets to ITER

- 100 micron tungsten 3D printing capability available (Dunlee).
- Operation with channel gap of 1 mm for ITER
Separation LiD/LiT before leaving the vessel (Patent disclosure Kolemen & Majeski)

- Solubility of hydrogen in lithium falls rapidly with temperature
 - 0.3 At. % at 300 °C \leftrightarrow 0.044% at 200 °C.
- LiD, LiT will be formed
- Density of LiT (1.0 g/cm³), LiD (0.9 g/cm³) twice liquid lithium (0.5 g/cm³)
- Separation via magnetic centrifuge (We have B in tokamak, need to run j in a cylinder)
 - Centrifuges would operate at ~190°C
 - Enriched slurry of LiD, LiT removed continuously at periphery
- **Flow to tritium separation unit (miniscule) ↓** \Rightarrow **MHD drag ↓** \Rightarrow **Power ↓**
Li/LiH separation

• Hope to test with Dan Andruczyk and David Ruzic in Illinois
• Agreed on bringing our setup to Illinois to test Lithium separation
Conclusion and Future Perspective

- LMX-U is studying the LM flow in an open channel flow
- We can reproduce open channel flow under various MHD drag conditions with simulations
- *Divertorlets* concept is built and tested in LMX
- Experiments are reproduced with analytic models and simulations
- Divertorlet is projected to fusion reactor looks reasonable
MHD drag due to vertical B is an issue, but how bad is it?

Chuck Kessel asked to look at cassette configurations. If we can have toroidal separation, we can run J_{tor}

Setting drag=forcing, and require velocity from heat flux

$$j \alpha B_{ver} Q^2$$ (not dependent on divertor length)

Required total current is very low
Fast LM Experiments at Oroshhi-2, Japan
Arrangement of mirrors for measurements

- Measurements with laser sheet, at two different positions between electrodes.