On Effect of n=2 RMP to Edge Pedestal in KSTAR with Nonlinear MHD Simulation

S.K. Kim1,2, S. Pamela3, M. Becoulet4, G. Huijsmans4, O. Kwon5, Y. In6, J.H. Lee7, M. Kim7, S.M. Yang2, J.K. Park2, N. Logan8, Yong-Su Na9, and JOREK team

1Princeton University, USA
2Princeton Plasma Physics Laboratory, USA
3Culham Centre for Fusion Energy, CCFE, UK
4CEA, France
5Department of Physics, Daegu University, Korea
6Department of Physics, UNIST, Korea
7Korea Institute of Fusion Energy, Korea
8Lawrence Livermore National Laboratory, USA
9Department of Nuclear Engineering, Seoul National University, Korea

E-mail: sk42@princeton.edu

2021. Mar. 11
RMP-induced pedestal degradation are successful explanation for ELM suppression, but have some difficulties in explaining experiment

- **RMP is promising ELM suppression method** [T. Evans 2004]
 - Linearly stabilized ELMs with degraded pedestal by RMP-induced islands and stochastic region [Q. Hu PRL 2020].
 → One of promising/successful explanation.

- **Addition concept may be needed for full explanation**
 - Possible difficulty to solely describe pedestal degradation with islands.
 → Additional transport induced by RMPs.
 - Limitations to explain ELM-like mode during suppression. [J. Lee PRL 2016].
 → Contradiction to linearly stabilized ELMs by Degraded pedestal.
Previous work reveals that RMP can induce other transport mechanism and directly affect ELM stability as well as pedestal degradation

- **Previous studies on RMP-induced transport**
 - Micro-instabilities \([1,2]\).
 - Edge kink response \([3,4]\).
 - Neoclassical toroidal viscosity (NTV) \([5,6]\).

- **Direct effect of RMPs on the ELM stability**
 - Effect of RMP induced field structures on ELM stability \([7,8]\).
 - ELM mitigation/suppression by RMP-ELM interaction \([9-12]\).

Nonlinear MHD simulation is performed to investigate the RMP-driven ELM crash suppression considering these aspects.

1. Simulation setup

2. Effect of RMP-induced plasma response on pedestal profile

3. RMP-induced ELM-crash suppression

4. Summary
JOEREK and PENTRC coupled simulation is developed to simulate RMP-ELM dynamics including RMP response and NTV transport

- **JOEREK (3D Nonlinear MHD)** [G. Huysmans 2009]
 - Realistic geometries with scrape-off layer is included.
 - Reduced MHD equation [F. Orain 2013] is used.

 \[
 \frac{1}{R^2} \frac{\partial \psi}{\partial t} = \eta(T) \nabla \cdot \left(\frac{1}{R^2} \nabla \psi \right) - \vec{B} \cdot \left(\nabla u - \tau_{IC} \frac{\nabla p_e}{\rho} \right)
 \]
 Ohm’s law

 \[
 \frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \vec{v}) + \nabla \cdot (D \nabla \rho) + S_\rho
 \]
 Continuity eqn.

 \[
 \rho \left(\frac{\partial}{\partial t} + \vec{v} \cdot \nabla \right) \left(\vec{v}_E + \vec{v}_\parallel \right) = -\nabla (\rho T) + \vec{j} \times \vec{B} + S_v - \vec{v} S_\rho + \mu \Delta \vec{v} - \nabla \cdot \vec{I}_{\text{neo}}
 \]
 Momentum eqn. \((v_\parallel, w)\)

 \[
 \frac{\partial (\rho T)}{\partial t} = - (\vec{v}_E + \vec{v}_\parallel) \cdot \nabla \rho T - \gamma \rho T \nabla \cdot (\vec{v}_E + \vec{v}_\parallel) + \nabla \cdot (k \nabla T) + (1 - \gamma) S_T
 \]
 Energy eqn.

- **PENTRC (NTV)** [N. Logan 2013]
 - NTV calculation code based on the given plasma equilibrium, profiles, and plasma displacements.
 - Inclusion of NTV by JOREK-PENTRC coupling.
\(n = 2 \) RMP-driven ELM crash suppression in KSTAR is numerically reproduced

- **Reference discharge**
 - KSTAR ELM suppression discharge (#18594) with \(n = 2 \) (\(\phi = 90^\circ \)) RMPs.
 - \(I_p = 690 \text{ kA}, \ q_{95} \sim 4, \ \beta_N \sim 2.., \bar{n}_e = 3.3 \times 10^{19} \text{ m}^{-3}. \)
 - Stable ELM suppression entry at \(I_{RMP} \geq 3.5 \text{ kA}. \)
 - Simulation with \(I_{RMP} = 4 \text{ kA}. \)

[Graph showing \(I_{RMP} \) and \(\beta_N \) over time]

- RMP only simulation (\(n=0 \) and 2)
- RMP simulation with ELMs (\(n \) up to 14)

Contents

1. Simulation setup

2. Effect of RMP-induced plasma response on pedestal profile

3. RMP-induced ELM-crash suppression

4. Summary
RMP response is the kink-tearing response which can contribute to the enhanced convective/conductive pedestal transport

- **Kink - tearing responses by RMP**
 - Kink + tearing response (KTM).
 - Kink \{ ✓ Edge localized perturbation.

- **Tearing**
 - ✓ $V_{\perp e} = 0$ layer and finite resistivity.
 - ✓ Field penetration into the pedestal.

- **Resulted pedestal degradation**
 - ✓ $V_{E \times B}$ and stochastic layer in the pedestal.
 - ✓ Degradation of the mean pedestal.
 - ✓ Increased radial flux due to
 - $\Gamma_{E \times B, \perp}$ convection (Mainly n_e).
 - Island and stochastic layer (n_e and T).

[Diagram showing perturbations and profile degradation]
Plasma response causes NTV particle transport, resulting in further pedestal degradation, partially explaining pump-out

- NTV induced by plasma response
 - Plasma displacement (ξ_\perp) induced by RMPs.
 - Resulted NTV fluxes.
 - Torque τ_{NTV}
 - Particle flux Γ_{NTV}

- Effect of NTV transport
 - Further degradation of n_e pedestal by Γ_{NTV}
 - Kink + NTV (40% of Exp.).

→ Considerable effect of kink and NTV on pump-out.
MHD modeling with NTV explains pedestal degradation to some extent, but additional mechanism has to be introduced for full explanation.

- **Net decrease in pedestal gradient**
 - Pedestal degradation by plasma response + NTV transport.
 - ~40% decrease in pressure gradient (close to Experimental level).

- **Additional pump-out mechanisms**
 - RMP induced micro-instabilities [R. Hager 2020].
 - Particle transport by polarization drift [Q. Hu 2019].
 - They will be needed to fully explain the pump-out.

ExB convection and NTV flux largely contribute to the pump-out, but full explanation requires additional transport mechanisms.
Contents

1. Simulation setup

2. Effect of RMP-induced plasma response on pedestal profile

3. RMP-induced ELM-crash suppression

4. Summary
Natural ELM simulation (without RMPs) shows good agreement with experimental observations

- **Linear ELM simulation**
 - ✓ Consistent dominant \(n_{\text{ELM}} = 12 \).
 - ✓ Consistent poloidal velocity \(v_{\theta,\text{ELM}} \approx 3 \text{ km/s} \).
 - ✓ \(v_{\theta,\text{ELM}} \approx v_{\theta, \text{E} \times \text{B}} \) (ion - diamagnetic) \([1,2]\).

- **Nonlinear phase**
 - ✓ Mode crash during nonlinear phase.
 - ✓ \(\Delta W_{\text{ELM, sim}} \approx 8 \text{kJ} \) (\(\Delta W_{\text{ELM, exp}} \approx 7 \pm 4 \text{kJ} \)).

→ Experimentally relevant ELM is obtained.
 (\(v_{\theta,\text{ELM}} \approx v_{\theta, \text{E} \times \text{B}} \))

ELM crash suppression by experimentally relevant RMP configuration is successfully reproduced in the simulation

- **RMP-driven ELM crash suppression**
 - ✔ Strongly suppressed mode amplitude.
 - ✔ Disappeared bursty nonlinear mode crash.

![Graph](Nonlinear evolution of ELM)
ELM crash suppression by experimentally relevant RMP configuration is successfully reproduced in the simulation

- **RMP-driven ELM crash suppression**
 - Strongly suppressed mode amplitude.
 - Disappeared bursty nonlinear mode crash.
 - Existing filament structures in suppression case.
 - Spatially locked structure [J. Lee 2019].

 → ELM is nonlinearly saturated rather than linearly stabilized, so filament can remain.

- **Suppression above RMP threshold**
 - Mitigated with small RMP amplitude.
 - Fully suppressed at $I_{\text{RMP}} > 3$ kA.

 → It is consistent to experimental level (~4kA).
Degraded pedestal and RMP-ELM mode coupling make ELM crash suppression, but they must participate simultaneously.

- Effect of degraded pedestal on ELM stability
 - ~40% decreased pedestal gradient by RMPs.
 - ~65% decreased growth rate.

- Coupling between RMP and ELM harmonics
 - ELM suppression simulation contains two effects.
 - Degraded pedestal + RMP-ELM coupling
 - No crash suppression without coupling effect.
 (Even with decreased growth rate)
 - ELM crash suppression by combined two effects.

How RMP-ELM coupling affects ELM suppression?
RMP-ELM coupling further degrades the pedestal by increasing transport, resulting in the reduced ELM instability

- Enhanced pedestal transport by coupling effect
 - ~15% increased radial perturbed fields by coupling effect. (Tearing component)
 - Enhanced pedestal transport with increased island width.
 - Further decrease of pedestal gradient.

 ➔ Reduced ELM instability source
RMP-ELM coupling results in broad mode spectrum and increased interactions between ELM harmonics, preventing unstable ELM crash

- **Enhanced harmonic interactions by coupling effect**
 - Unlike ELMy, enhanced energy correlation among harmonics. [J. Kim NF 2019]
 - Broadened mode spectrum.
 - Large growth of unstable harmonic: ELM crash
 - Prevented mode crash due to broad spectrum and mode interactions. [P. W. Xi, PRL 2014]
 - Therefore, nonlinearly saturated ELMs by
 - Degraded pedestal + Broadened spectrum
 - Enhanced interaction
 - Driving ↓ + Dissipation ↑

- Important quantities for RMP-ELM coupling?
Overlap of magnetic islands near the pedestal top can be important to RMP-ELM coupling and ELM suppression

- **Spatial overlap of harmonics**
 - ✓ Overlap of harmonics: Favorable to their couplings [Rhee POP2015].
 - ✓ Existing harmonics,
 - ELM harmonics
 - RMP-Kink (peeling) → Localized to LCFS.
 - RMP-Tearing (island) → Wide radial range.

- **Island overlap near the pedestal top**
 - ✓ I_{RMP} scan to adjust island width near pedestal top.
 - ✓ ELM suppression entry where island overlap starts. (Chiricov $S=1$ between $8/2+9/2$)

➢ Overlap of RMP-induced islands can be advantageous for RMP-ELM coupling and suppression.
Slow poloidal rotation of ELM structure can be advantageous for enhancing the RMP-ELM interaction and achieving ELM suppression.

- Poloidal mode rotation and RMP-ELM coupling
 - Well sustained mode overlap: Favorable to coupling.
 - Sustained spatial overlap ($|\mathbf{V}_{\theta,\text{ELM}} - \mathbf{V}_{\theta,\text{RMP}}| \approx 0$).
 - Stationary phase difference (δ) of RMP and ELM.

Slow poloidal rotation of ELM structure can be advantageous for enhancing the RMP-ELM interaction and achieving ELM suppression.

- Poloidal mode rotation and RMP-ELM coupling
 - Well sustained mode overlap: Favorable to coupling.
 - Sustained spatial overlap ($|V_{\theta,\text{ELM}} - V_{\theta,\text{RMP}}| \approx 0$).
 → Stationary phase difference (δ) of RMP and ELM.
 - Static RMP, $V_{\theta,\text{RMP}} = 0$.
 → $V_{\theta,\text{ELM}} \approx 0$ to make stationary δ.

[Image showing phase overlap and filament motions]
Slow poloidal rotation of ELM structure can be advantageous for enhancing the RMP-ELM interaction and achieving ELM suppression

- **Poloidal mode rotation and RMP-ELM coupling**

 ✓ Well sustained mode overlap: Favorable to coupling.

 ✓ Sustained spatial overlap (\(|V_{\theta,ELM} - V_{\theta,RMP} | \approx 0 \)).
 → Stationary phase difference (\(\delta \)) of RMP and ELM.

 ✓ Static RMP, \(V_{\theta,RMP} = 0 \).
 → \(V_{\theta,ELM} \approx 0 \) to make stationary \(\delta \).

- **Small \(V_{E \times B} \) for RMP-ELM interaction**

 ✓ \(V_{\theta,ELM} \approx V_{E \times B} \) [1, 2] at pedestal.
 → \(V_{E \times B} \approx 0 \) is favorable.

 ✓ No suppression with large \(V_{E \times B} \) at pedestal top.

 → Small \(V_{\theta,ELM} \) (or \(V_{E \times B} \)) be advantageous for RMP-ELM coupling and suppression.

Summary

- n=2 RMP-driven pedestal degradation and ELM suppression
 - Pedestal degradation by RMP response and NTV, explaining the experiment to some extent.
 - Numerical reproduction of nonlinearly saturated ELM suppression.
 - Reduced pedestal gradient
 - Mode coupling between RMP and ELM

- RMP-ELM coupling contributes to the ELM-crash suppression
 - Further decreasing pedestal gradient. → ELM driving source ↓
 - Enhanced interactions between ELM harmonics. → Prevent NL mode crash

- Favorable conditions for RMP-ELM coupling
 - Overlap of RMP-induced islands near the pedestal top.
 - Small rotation of ELM structure or $V_{E\times B} \approx 0$ at the pedestal.
• Approximated displacement from nonlinear perturbation

✓ $T_{n=0}$ is dominant.

✓ Uniformity of T on the flux surface due to large parallel heat conduction.

✓ Therefore, $\xi_{\perp,n,m} \sim -\frac{\delta T_{n,m}}{\nabla T_{n=0}}$

✓ Less accurate under the presence of stochastic layer.

✓ No δB_\parallel component in reduced MHD.

✓ ξ_\parallel derived from linearized force balance equation ($\delta F(\xi_\perp, \xi_\parallel) = 0$).
In summary, RMP-ELM coupling can contribute to ELM crash suppression in two aspects:

- Role of RMP-ELM coupling in ELM crash suppression
 - Reduced source (∇P_{ped})
 - Increased pedestal transport
 - Prevented large mode growth
 - Increased harmonic interactions
 - RMP + ELM coupling
 - Spatial overlap between RMP-induced modes and ELM harmonics seems to be important.

- Important quantities for RMP-ELM coupling?
 - RMPs
 - Critical to ELM suppression
Backup – Simulation setup

• Numerical setup

✓ Neoclassical constraint (V_{neo}) is applied to construct the ion-poloidal flow.
✓ $V_{\theta,E\times B}$ in the pedestal region is in the ion-diamagnetic direction.
✓ $T_i = T_e$ is assumed.
✓ Adaptive diffusive profile and source are used to sustain the ρ, T, ν_{ϕ} profiles.
✓ $x10$ resistivity ($x40$ spitzer) and braginskii parallel conductivity are used.

$V_{\theta} = V_{E\times B} + V_{i*} + V_{||,\theta}$

[Poloidal flow components]
Backup - Coupling simulation shows experimentally reasonable results

- **Code coupling test**
 - Well reconstructed ξ_\perp including kink and partial tearing component.
 - Successful calculation of NTV-driven particle flux and torque.
 - A reasonable value from code coupling.

![Graphs showing Γ_{NTV}, τ_{NTV}, and τ_{Beam} against ψ_N](image1)

![Graph showing ξ_\perp profile form JOREK](image2)
• Tearing response

✓ Perturbed current shields the external field.
✓ $v_{\perp e} \approx 0$ layer and finite resistivity in the edge weaken the field shielding.
✓ Field penetration occurs in the pedestal region.
✓ As a result, stochastic layer is formed.
• Pedestal profile degradation
 ✓ Radial transport increases due to
 - $\nu_{E \times B, \perp}$ convection (Kink).
 - Stochastic layer (Tearing).
 ✓ Pedestal profile ($n=0$) is degraded.
 ✓ Density pedestal is governed by $\nu_{E \times B, \perp}$.
 ✓ It is consistent with the trend that pump-out increases with kink response [1,2].
 ✓ T pedestal shows a similar tendency in the experiment and simulation.

Backup – Vorticity and ExB profiles

- Vorticity and ExB profiles in the simulation

- Reduced vorticity U_{00} during ELM suppression
 - Possibility of evenly distributed energy among harmonics [H. Jhang 2017].

- ExB radial profile comparison
 - $V_{\theta,E\times B}$ is increased from 3 to 15 km/s.
 - Decoupling of $V_{\theta,E\times B}$ and $V_{\theta,ELM}$ can occur in very nonlinear case.
Backup - RMP-ELM interaction can increase spectral transfer and broaden mode spectrum of ELM, preventing crash of unstable ELM

- Increased spectral energy transfer by RMP-ELM coupling

- Enhanced interaction between ELM harmonics with RMP [M. Becoulet 2014].
 - Amplified energy transfer between harmonics and broadened spectrum

- Prevented catastrophic growth and crash of unstable mode [P. Xi 2014].

- Participation of both tearing and twisting parity modes in the mode coupling.
 - Both kink and tearing part by RMP mediates the mode interactions.
Backup - Both kink and tearing response by RMP have to spatially cover pedestal to mediate interactions between ELM

- Increased interactions between ELM by coupled RMP

✓ Covering the pedestal and overlapping of RMP mode to mediate interactions.
 • Kink-peeling → Overlap is easy, but localized to LCFS.
 • Tearing → Wide radial range, but sufficient island width needed for overlap.

✓ Chiricov parameter (> 1) near the pedestal top (S_{89}).
 • $n = n_{\text{RMP}}$ island overlap to couple with higher n’s.
 • ELM suppression as island overlap occurs.

Position of rational surfaces and island width are important.
• Conditions for the interactions between RMP and ELM

✓ Kink-peeling favorable MP configuration.

✓ Rational surface \((q = m/n_{\text{RMP}}) \) near the pedestal top.
 ▪ Island to cover the entire pedestal and dominant ELMs.

✓ Chiricov parameter \((S > 1) \) near the pedestal top.
 ▪ \(n = n_{\text{RMP}} \) island overlap to couple with higher \(n' \)s.

✓ \(v_{\theta,\text{PBM}} \approx 0 \) before RMP application.
 ▪ Favorable to the locking of ELM.