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Plasma Equilibria: What and Why?

● Reactor Design and Optimization

● Experimental Reconstruction 

● Necessary for many further plasma physics 

studies

○ Particle Transport 

○ Stability
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https://www.ansys.com/news-center/press-releases/ansys-enables-iter-

organization-design-worlds-largest-highly-sustainable-nuclear-fusion-power-

plant

Plasma Equilibrium: Configuration of magnetic fields 
that describes a plasma in steady-state (Ideal MHD)

Quick

Accurate



Stellarator Equilibrium - DESC

(Dudt and Kolemen 2020)
● 3D Ideal MHD Equilibrium Code

● Assumes Nested Flux Surfaces

● Inverse Equilibrium Problem

● Minimizes Force Error Directly

● Pseudospectral Code

3D Spectral Representation of 𝐱 =
(𝑅, 𝜆, 𝑍) using Fourier-Zernike Basis

𝜆(𝜌, 𝜃, 𝜁)
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Stellarator Equilibrium - VMEC

• Spectral inverse equilibrium code (Hirshman and Whitman, 1983)

• Assumes Nested Flux Surfaces, Ideal MHD

• Fourier series on flux surfaces, defined only on discrete radial grid

• Angular derivatives analytic, but radial derivatives are finite difference

• Minimizes energy with steepest-descent method based on variational 
principle

s

v

u

u (s,u,v)
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Code Algorithms

Inputs
𝑅𝑏 𝜌 = 1, 𝜃, 𝜁 ,
𝑍𝑏 𝜌 = 1, 𝜃, 𝜁 ,
𝑝 𝜌 , 𝜄 𝜌 , 𝜓𝑎

Fourier 
Series
𝑅𝑏,𝑚𝑛, 𝑍𝑏,𝑚𝑛

Compute B and J

Compute Force 
Error Residual

Repeat until convergence

Compute Δ𝒙 and 
advance state

𝒙 = [𝑅𝑙𝑚𝑛, 𝑍𝑙𝑚𝑛, 𝜆𝑙𝑚𝑛]
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𝒇 𝒙 = 𝟎
Gauss-Newton 
Method to find Δ𝒙

Compute 𝑭 on 
collocation grid

Compute Angular 
Derivatives Analytically

DESC VMEC

Compute Radial 
Derivatives with 
1st-Order Finite 
Differences

Compute Radial 
Derivatives 
Analytically

Compute 𝐹𝑖
𝑚𝑛, the 

spectral components 
of F

𝒙 = [𝑅𝑚𝑛(𝜌𝑖), 𝑍𝑚𝑛(𝜌𝑖), 𝜆𝑚𝑛(𝜌𝑖)]

𝜕𝑥𝑖
𝑚𝑛

𝜕𝑡
= 𝐹𝑖

𝑚𝑛

𝐹𝑖
𝑚𝑛 are the directions of 

steepest descent for energy

(Hirshman and Whitson, 1983)



Force Error as an Accuracy Metric

• Goal is to satisfy MHD equilibrium force balance in volume

• Looking at residual force error is an intuitive metric of how well the 
governing equations are being solved

• Use force error residual as metric to compare DESC and VMEC codes

• VMEC does not output force error in real space 
• -> Must calculate from outputs (R,Z,λ)
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• Volume-Averaged Force Error 

• Taken from 𝑠 = 0.1 → 𝑠 = 0.99

• Flux-Surface-Averaged Force Error

• Both normalized by pressure gradient volume average

Force Error Metrics
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Calculated Force Error Insensitive to Radial Derivative Method
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2nd Order Central Differences 

used for remainder of results 

shown in this presentation

Only error calculated near-axis 

changes significantly with method



Code Solution Comparison Procedure

• The same W7X-like input boundary and profiles (available on DESC github) were 
used for all comparisons

• Angular and radial resolutions for each code were varied and ran to form a set of 
solutions

• Normalized force balance error metrics for each solution was calculated
• All solutions were ran in fixed boundary mode
• All solutions were ran on identical architectures

• A single AMD EPYC 7281 CPU core with 32GB of RAM on PPPL’s portal computing clusters
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Angular Resolution Radial Resolution Other Parameters

DESC M=N=[8,10,12,14,16,18,20] L=M=N Fringe and ANSI spectral indexing

VMEC M=N=[8,10,12,14,16,18,20] NS=[256,512,1024] FTOL=[1E-4,1E-8,1E-12]



Solution Comparison - Flux Surfaces Indistinguishable by Eye
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For Given Resolution, DESC has lower Force Error - Accurate
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W7X M=N=12 

Energy (J) |F|/|𝝯p| Runtime

(1 CPU)

DESC

(L=12)

8.4648759e+07 0.013 0.71 hours

VMEC 

(ns=1024)

8.4648752e+07 0.168 1.19 hours



For Given Time to Solution, DESC has lower Force Error - Quick
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W7X M=N=12 

Energy (J) |F|/|𝝯p| Runtime

(1 CPU)

DESC

(L=12)

8.4648759e+07 0.013 0.71 hours

VMEC 

(ns=1024)

8.4648752e+07 0.168 1.19 hours



VMEC Force Error is Noticeably Higher Near-axis

● This could be due to VMEC’s 

Fourier coefficients not 

explicitly obeying analyticity 

constraint near axis
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Analyticity Constraints for Functions in Polar Domains

If a function 𝑓(𝜌, 𝜃) is analytic everywhere on the unit disk, then

1(Lewis and Bellan, 1990)

lim
𝜌→0

𝑎𝑚
𝜌𝑚

< ∞ lim
𝜌→0

𝑏𝑚
𝜌𝑚

< ∞

x

y

𝜌

𝜃
1

𝑓 𝜌, 𝜃 = ෍

𝑚=0

∞

𝑎𝑚 𝜌 cos 𝑚𝜃 + ෍

𝑚=0

∞

𝑏𝑚 𝜌 𝑠𝑖𝑛 𝑚𝜃

- Physical Quantities (like B) are analytic

- The Zernike basis radial-poloidal mode coupling 
automatically satisfies this constraint

i.e  𝑎𝑚, 𝑏𝑚 ∼ 𝜌𝑚 as 𝜌 → 0

where
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Analytic Constraint Near Axis

• Fourier coefficients of an analytic function must scale as ⍴m near axis 
(Lewis and Bellan 1990)

• DESC coefficients obey this inherently due to Zernike basis, VMEC do 
not, especially for higher order modes

Plots Courtesy of Daniel Dudt
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lim
𝜌→0

𝑎𝑚
𝜌𝑚

< ∞



DESC compares well to VMEC – Force Error

- Surface-Averaged Force Balance Error lower in DESC than VMEC

- VMEC error spikes near 𝝆 → 𝟎 : Issues at axis!

𝜌
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DESC Achieves Superior Radial Convergence over VMEC (DSHAPE)
Angular Convergence Radial Convergence

DESC Exponential Exponential

VMEC Exponential Algebraic 𝑶 𝑁𝑟𝑎𝑑𝑖𝑎𝑙
−1

17Right: semi-log axisLeft: log-log axis

VMEC: Algebraic Radial Convergence DESC: Exponential Radial Convergence



VMEC DESC

Analyticity Issues at Magnetic Axis Zernike Polynomials resolves axis 
issues
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DESC is an Improvement over VMEC



VMEC DESC

Analyticity Issues at Magnetic Axis Zernike Polynomials resolves axis 
issues

Convergence limited by finite 
difference accuracy

Pseudospectral method convergence 
limited only by smoothness of solution
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DESC is an Improvement over VMEC



VMEC DESC

Analyticity Issues at Magnetic Axis Zernike Polynomials resolves axis 
issues

Convergence limited by finite 
difference accuracy

Pseudospectral method convergence 
limited only by smoothness of solution

Energy Minimization makes solution 
quality difficult to assess

Force Error Minimization makes 
quality intuitive (lower F = better )
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VMEC DESC

Analyticity Issues at Magnetic Axis Zernike Polynomials resolves axis 
issues

Convergence limited by finite 
difference accuracy

Pseudospectral method convergence 
limited only by smoothness of solution

Energy Minimization makes solution 
quality difficult to assess

Force Error Minimization makes 
quality intuitive (lower F = better )

Gradient descent method to find Δ𝒙 Gauss-Newton Method to find Δ𝒙
→ super-linear convergence 
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VMEC DESC

Analyticity Issues at Magnetic Axis Zernike Polynomials resolves axis 
issues

Convergence limited by finite 
difference accuracy

Pseudospectral method convergence 
limited only by smoothness of solution

Energy Minimization makes solution 
quality difficult to assess

Force Error Minimization makes 
quality intuitive (lower F = better )

Gradient descent method to find Δ𝒙 Gauss-Newton Method to find Δ𝒙
→ super-linear convergence 

Poorly documented, aging Fortran Recent code, Python
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1https://github.com/PrincetonUniversity/STELLOPT/blob/3b0f12d3
1926e4900c15b473fcafb01ed90605c7/VMEC2000/Sources/General/
totzsp_mod.f
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DESC is an Improvement over VMEC



VMEC DESC

Analyticity Issues at Magnetic Axis Zernike Polynomials resolves axis 
issues

Convergence limited by finite 
difference accuracy

Pseudospectral method convergence 
limited only by smoothness of solution

Energy Minimization makes solution 
quality difficult to assess

Force Error Minimization makes 
quality intuitive (lower F = better )

Gradient descent method to find Δ𝒙 Gauss-Newton Method to find Δ𝒙
→ super-linear convergence 

Poorly documented, aging Fortran Recent code, Python

Parallelized across CPUs Ability to use GPUs for speedup

Automatic Differentiation 23

1https://github.com/PrincetonUniversity/STELLOPT/blob/3b0f12d3
1926e4900c15b473fcafb01ed90605c7/VMEC2000/Sources/General/
totzsp_mod.f
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DESC is an Improvement over VMEC



Conclusions
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• DESC more accurate than VMEC at given resolution or time-to-solution

• DESC solution accuracy better than VMEC near axis

• DESC  radial convergence not limited by finite differences

• Future work can make DESC faster – pre-compilation of objective, parallelize 

across CPUs/GPUs



Check out our Code and Publications!

• D.W. Dudt and E. Kolemen (2020). DESC: A stellarator equilibrium 
solver. Phys. Plasmas, 27 (10)

• The DESC Stellarator Code Suite Part I https://arxiv.org/abs/2203.17173

• The DESC Stellarator Code Suite Part II https://arxiv.org/abs/2203.15927

• The DESC Stellarator Code Suite Part III https://arxiv.org/abs/2204.00078

Repository: https://github.com/PlasmaControl/DESC

Python Package: pip install desc-opt
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https://arxiv.org/abs/2203.17173
https://arxiv.org/abs/2203.15927
https://arxiv.org/abs/2204.00078
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Backup



Both DESC and VMEC Poloidal Angle are Optimal

• Spectral condensation as defined by Hirshman 
and Meier (1985)

• Minimization of M wrt poloidal angle 
corresponds to an optimally condensed Fourier 
spectrum -> explicit constraint in VMEC

• DESC poloidal angle found through 
optimization is as optimal as VMEC’s

Plot Courtesy of Daniel Dudt
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W7-X Equilibrium Input Profiles
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DSHAPE Equilibrium and Profiles
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Force Error is Calculated from VMEC Starting with R,Z,λ

● Read in Fourier coefficients from VMEC wout file

○ convert λ from half -> full mesh

● Find necessary angular derivatives analytically

● Find necessary radial derivatives numerically

○ finite difference, splines, etc.

● Multiply out in real space to find force error F

● Use F to define accuracy metrics
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VMEC – Theory

First variation, with t as 
variational parameter

Steepest Descent direction: change 𝑋𝑗
𝑚𝑛 until 

𝑑𝑊

𝑑𝑡
= 0 i.e. stationary point is reached

𝑋𝑗 = 𝑅, 𝜆, 𝑍 , 𝑗 = 1,2,3

𝑋𝑗 =෍

𝑚,𝑛

𝑋𝑗
𝑚𝑛e 𝑖 𝑚𝑢 −𝑛𝑣

Change to 2nd

order for better 
convergence

(Hirshman and Whitson, 1983)
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VMEC Algorithm

Inputs
𝑅𝑏 𝑠 = 1, 𝑢, 𝑣 ,
𝑍𝑏 𝑠 = 1, 𝑢, 𝑣 ,
𝑝 𝑠 , 𝜄 𝑠 , 𝜓𝑎

Scale Boundary as 
Initial Guess for 
Surface Geometry
𝑅𝑚𝑛 𝑠 ~𝑠 𝑅𝑏,𝑚𝑛

𝑍𝑚𝑛 𝑠 ~𝑠 𝑍𝑏,𝑚𝑛

Fourier 
Series
𝑅𝑏,𝑚𝑛, 𝑍𝑏,𝑚𝑛

Compute B and 
necessary derivatives 
from 𝑅 𝑠, 𝑢, 𝑣 , 𝑍(𝑠, 𝑢, 𝑣)

Compute 𝐹𝑗
𝑚𝑛

Initialization

Main Algorithm

Repeat until converged

Interpolate solution onto a 
finer radial mesh

Repeat until Desired Resolution

(Hirshman and Whitson, 1983)
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What DESC Solves

This leads to a system of equations 

comprised of the force balance error 

evaluated at the collocation nodes, which 

we want to make equal to zero -> Can use 

root-finding or least-squares to solve

x is the spectral coefficients of R,Z,λ, which 

is what we are changing to minimize f
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DESC Algorithm

Inputs
𝑅𝑏 𝜌 = 1, 𝜃, 𝜁 ,
𝑍𝑏 𝜌 = 1, 𝜃, 𝜁 ,
𝑝 𝜌 , 𝜄 𝜌 , 𝜓𝑎

Scale Boundary as 
Initial Guess for 
Surface Geometry

𝑅𝑚𝑛 𝜌 ~𝜌𝑅𝑏,𝑚𝑛

𝑍𝑚𝑛 𝜌 ~𝜌𝑍𝑏,𝑚𝑛

Fourier 
Series
𝑅𝑏,𝑚𝑛, 𝑍𝑏,𝑚𝑛

Compute B and J from  
𝑅 𝜌, 𝜃, 𝜁 , 𝑍 𝜌, 𝜃, 𝜁 , 𝜆(𝜌, 𝜃, 𝜁)

Compute 𝐹𝜌 , 𝐹𝛽 on 

collocation grid

Initialization

Main Algorithm

Repeat until converged

Increase Collocation Grid 
and/or Spectral Resolution

Repeat until Desired Resolution

𝒇 𝒙 = 𝟎, use Gauss-
Newton Method to find 
Δ𝒙

𝒙 = [𝑅𝑙𝑚𝑛, 𝑍𝑙𝑚𝑛, 𝜆𝑙𝑚𝑛]
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Plasma Model – Ideal MHD

(Freidberg 2014)

Simplest macroscopic 

plasma fluid model, assumes

low-frequency, 

long wavelength,

neglects e- inertia
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VMEC - Coordinate System

s

v

u

u (s,u,v)

𝜌 → 𝑠 Flux Surface Label

𝜃 → 𝑢 Poloidal Angle

𝜗 SFL Poloidal Angle

𝜙 → 𝑣 Geometric Toroidal Angle

Geometry represented as Fourier Series in 
𝑢, 𝑣 on each discrete surface

(Hirshman and Whitson, 1983)
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𝜆(𝜌, 𝜃, 𝜁)

DESC - Coordinate System

𝜌 Flux Surface Label

𝜃 Poloidal Angle

𝜗 SFL Poloidal Angle

𝜙 Geometric Toroidal Angle
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Geometry represented continuously with 
global basis functions

(Dudt and Kolemen 2020)



Analyticity Constraint at Polar Axis Proof

● Assume 𝑓(𝑟, 𝜃) is a physical scalar, regular at r=0

● Expand in a Fourier Series: σ𝑚=−∞
∞ 𝑎𝑚 𝑟 𝑒

𝑖𝑚𝜃 = σ−∞
∞ 𝑓𝑚(𝑟, 𝜃)

○ Where the Fourier coefficients are a function of polar radius r

● Assume each 𝑓𝑚(𝑟, 𝜃) is a regular function of (x,y) at r=0

● Notice that 𝑒𝑖𝑚𝜃is NOT regular at r=0 (it is multi-valued)

● But, 𝑟𝑒±𝑖𝑚𝜃 |𝑚|
= 𝑥 ± 𝑖𝑦 |𝑚| is a regular function of (x,y) b/c it is a polynomial in (x,y)

● We can rewrite 𝑓(𝑟, 𝜃) as 
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1(Lewis and Bellan, 1990)

x

y

𝑟

𝜃
1

Regular at 

r=0

Regular at 

r=0

Must be regular at r=0!

lim
𝑟→0

𝑎𝑚(𝑟)

𝑟|𝑚|
< ∞

𝑎𝑚 𝑟 must scale at least as 𝑟|𝑚|

𝑎𝑚 𝑟 ∼ 𝑟 𝑚 + 𝑟 𝑚 +2…


