Nonlinear MHD modeling on RMP-induced pump-out in KSTAR with realistic tokamak geometry

S.K. Kim1,2, N. Logan3, M. Becoulet4, M. Hoelzl5, Q. Hu2, G. Huijsmans4, S. Pamela6, Q. Yu5, S.M. Yang2, E. Kolemen1,2, J.-K. Park2, and JOREK team**

1Princeton University, USA
2Princeton Plasma Physics Laboratory, USA
3Lawrence Livermore National Laboratory, USA
4Department of plasma physics, CEA, France
5Max Planck Institute for Plasma Physics, Germany
6Culham Centre for Fusion Energy, U.K

E-mail: sk42@princeton.edu

**M. Hoelzl et al., Nucl. Fusion 61, 065001(2021)
Outline

• **Introduction**
 - Bifurcating pump-outs by RMPs.
 - Nonlinear modeling with toroidal effect.

• **Method**
 - JOREK (nonlinear 3D MHD) and PENTRC (NTV) code coupling.

• **Result**
 - Pump-out: Led by field penetration (island opening).
 - 1st pump: ExB flow damping, polarization, and NTV.
 - 2nd pump: Mode overlap and stochastization.
 - Additional case: dR_{sep} effect can be reproduced.

• **Conclusion**
RMPs are promising method to stabilize the unfavorable ELMs
Understanding its effect on the density pedestal is important

• ELM control via resonant 3D field perturbations
 ✓ Resonant magnetic field perturbations (RMPs) [T. Evans 04]
 • 3D field using external field coils (I_{RMP}).
 • Suppressing ELMs by degrading the pedestal.

• RMP-induced edge transport
 ✓ Degrading the pedestal.
 • Threshold characteristic: Bifurcation.
 ✓ Prominent reduction in density pedestal ($n_{e,ped}$).
 • Pump-out.
 ✓ Pump-out mechanism: Challenging question.
 → Important for understanding/predicting ELM supp.
Recent reduced geometry simulation reveals strong connection between bifurcating transport and RMP penetration (island opening)

- Pump-out by bifurcating field penetration
 - RMP shielding by plasma response.
 - Bifurcating field penetration by overcoming the shielding.
 - 1st (foot) and 2nd (top) pump-out [TM1, Q. Hu 2020].
 - Pump-out: Particle transport on island by polarization effect.

This talk introduces...
Validation in realistic toroidal geometry with n=1 KSTAR RMP: Role of toroidal effect.
Toroidal effect can induce additional particle transport mechanism and mode coupling effect

- Toroidal effect on RMP modelling
 - Particle transports.
 - Ion Neoclassical toroidal viscosity (NTV) [Liu 2020].
 - Mode coupling.
 - Toroidal mode coupling [Becoulet 2014].

- Utilization of hybrid-particle equation
 - Polarization effect (Electron) / Ion-NTV effect (Ion).
 - Heuristics approach: Hybrid equations based on $n_e = n_i$.
 - Numerically valid by omitting NTV torque in momentum equation.

$$
\partial_t n = -\nabla \cdot n (\vec{v}_{\perp,e} - \vec{v}_{\parallel,i}) + \nabla \cdot (D_{\perp} \nabla n) + S_n + \frac{1}{e} \nabla \cdot \vec{j}_{\parallel} + \nabla \cdot \vec{F}_{\text{NTV}}
$$

- Electron density equation
- Polarization
- Ion NTV

Dedicated NTV implementation will be included in future work.
Outline

• Introduction
 - Bifurcating pump-outs by RMPs.
 - Nonlinear MHD modeling with toroidal effect.

• Method

• Result

• Conclusion
JOREK and PENTRC coupled simulation is developed for nonlinear modeling of RMP-induced pump-out including plasma response and NTV transport.

- **JOREK (3D Nonlinear MHD)** [G. Huysmans 09, M. Hoelzl 21]
 - Realistic geometries with SOL.
 - 5-fields reduced resistive-visco MHD equation [F. Orain 2013].
 - Heuristic hybrid density equation.
 - w/ diamagnetic + toroidal flow
 - w/ heuristic mean neoclassical viscosity
 - w/ $T_i = T_e$ (single temperature)

- **PENTRC (NTV)** [N. Logan 2013]
 - NTV with RMP response.
 - RMP response: Equilibrium, profiles, displacement (ξ).
Plasma displacement is derived using semi-linear approximation to calculate NTV flux

- Approximated displacement from nonlinear perturbation

 ✓ Displacement (ξ_\perp) using temperature T [N. Ferraro 13].
 \[\xi_\perp \sim - \frac{\delta T}{\nabla T_{n=0}} \]
 ✓ ξ_α: Linear toroidal force balance $F[\xi_\alpha, \xi_\perp]$ [J.-K. Park 09].
 ✓ Becomes less accurate under strong stochasticity.

[Comparison of T and ξ_\perp in Poincare plot]
Outline

• Introduction
 - Bifurcating pump-outs by RMPs.
 - Nonlinear MHD modeling with toroidal effect.

• Method
 - JOREK (nonlinear 3D MHD) and PENTRC (NTV) code coupling.

• Result
 - Pump-out:

• Conclusion
Experimental pump-out is numerically captured, showing good agreement: Bifurcation and pedestal degradation

- **Pump-out simulation with increasing RMP**
 - **1st**: Largely decreased density pedestal at 6/1 surface.
 - Density pump in pedestal foot.
 - **2nd**: Decreased pedestal height with gradient.
 - Density pedestal degradation in broad region.

![Graph showing experimental and simulation results](image)

<table>
<thead>
<tr>
<th>Safety factor q</th>
<th>5/1</th>
<th>6/1</th>
<th>7/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>no RMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0 kA (1st)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0 kA (1st)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 kA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 kA (2nd)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graph Details

- $n_{e \text{ped}} [10^{19} \text{ m}^{-3}]$ vs. I_{RMP} [kA]
- $n_e [10^{19} \text{ m}^{-3}]$ vs. I_{RMP} [kA]
- Safety factor q vs. ψ_N [\text{JET}]
Bifurcation are the outcome of field penetration and island opening:
Good agreement with cylinder calculation

- **Pump-out and island opening**
 - Highly correlated with island opening at 6/1 and 5/1 surfaces.
 - Field penetration leads the bifurcating behavior.
 - Consistent to TM1 (cylinder) results.

Verified the reliability of prediction with reduced geometry.
Outline

• Introduction
 - Bifurcating pump-outs by RMPs.
 - Nonlinear MHD modeling with toroidal effect.

• Method
 - JOREK (nonlinear 3D MHD) and PENTRC (NTV) code coupling.

• Result
 - Pump-out: Led by field penetration (island opening).
 - 1st pump:

• Conclusion
However, the geometry effect leads to difference in detail:
It may require “additional” one in addition to the polarization effect

- Pump-out at pedestal foot by polarization effect.
 - Foot island opening (6/1) at ~1.5 kA.
 - Pump-out at the foot island by polarization effect. → May be insufficient.
 - Weakened polarization by toroidal effect & near-resonant kinking.
Weakened particle transport by toroidal effect can be cured by additional transport by itself: NTV

- **NTV particle flux at pedestal foot**
 - Two peaks NTV: By kink and island.
 - Kink: Narrow/Localized to edge. → **Weaker effect.**
 - Island: Broader Γ_{NTV}. → **Larger effect.**
 - Sudden increases at island opening (1.5 kA). → Recovers experimental pump-out level.

\[
\frac{1}{e} \nabla \cdot j_\parallel + \nabla \cdot \Gamma_{NTV}
\]

Polarization NTV
Outline

• Introduction
 - Bifurcating pump-outs by RMPs.
 - Nonlinear MHD modeling with toroidal effect.

• Method
 - JOREK (nonlinear 3D MHD) and PENTRC (NTV) code coupling.

• Result
 - Pump-out: Led by field penetration (island opening).
 - 1st pump: ExB flow damping, polarization, and NTV.
 - 2nd pump:

• Conclusion
Weakened particle transport by toroidal effect can be cured by additional transport by itself: NTV

- **NTV driven by nonlinear flow response**

 ✓ $E \times B$ flow ($\omega_{E \times B}$) damping at island region.

 ✓ Drift kinetic Landau resonance [Liu 2020].

 ✓ NTV by *nonlinear flow change*, not by unperturbed $\omega_{E \times B}$.

 ➔ Importance of nonlinear response.
Calculated NTV torque shows experimentally acceptable value, supporting the reliability of derived NTV transport.

- **NTV torque with increasing RMP**
 - Reasonable value for $I_{RMP} < 4 \text{ kA.}$ \(\rightarrow\) Reasonable NTV in pump-out.
 - Strong stochasticity for $I_{RMP} > 4 \text{ kA.}$ \(\rightarrow\) Irrelevant ξ_{\perp} and NTV.
 - Γ_{NTV} of 3.5 kA for simulation with $I_{RMP} > 4 \text{ kA.}$

- **Assuming constant $\chi_\phi,$**

 \[
 \tau_{\text{net,ped}} \propto V_{\phi,\text{ped}} \quad \Rightarrow \quad \tau_{\text{net,ped}} \geq \tau_{\text{NBI}} - \tau_{\text{NTV}} \\
 \Rightarrow \quad \frac{nV_{\phi,\text{ped}}}{nV_{\phi,\text{ped, noRMP}}} > 1 - \frac{\tau_{\text{NTV}}}{\tau_{\text{NBI}}}
 \]

\[
\tau_{\text{net,ped}} \propto V_{\phi,\text{ped}} \\
\Rightarrow \tau_{\text{net,ped}} \geq \tau_{\text{NBI}} - \tau_{\text{NTV}} \\
\Rightarrow \frac{nV_{\phi,\text{ped}}}{nV_{\phi,\text{ped, noRMP}}} > 1 - \frac{\tau_{\text{NTV}}}{\tau_{\text{NBI}}}
\]
Second bifurcating particle transport or pump

- Increase in 5/1 island width (~4 kA). → Drives radial particle fluxes.
- Previous findings: ω_E or $\omega_{e\perp} \to 0$ for large field penetration.
- Additional contributor is required.

![Graphs showing particle transport and island width](image)

2nd pump-out is mainly due to large increase in stochasticity with 5/1 island, but not by direct flow effect
Nonlinear mode coupling can be one candidate for top island opening

- Possible mode coupling with secondary island.
 - Secondary island (m/n=10/2) by kinking (NR) effect.
 - Spatial overlap between (5/1+10/2).
 → Leads to sudden increase of (5/1) component.
 - Cross-check with another reference is needed.
 → To validate the concept.
Outline

• Introduction
 - Bifurcating pump-outs by RMPs.
 - Nonlinear modeling with toroidal effect.

• Method
 - JOREK (nonlinear 3D MHD) and PENTRC (NTV) code coupling.

• Result
 - Pump-out: Led by field penetration (island opening).
 - 1st pump: ExB flow damping, polarization, and NTV.
 - 2nd pump: Mode overlap and stochastization.
 - Additional case:

• Conclusion
DN plasma is one of strong candidates for Future devices, but it has difficulty in accessing ELM suppression

- ELM suppression in double-null plasma (DN)
 - dR_{sep}: Radial gap between flux surface of active/inactive X-points.
 - More difficult suppression with smaller dR_{sep} [M. Shafer, NF 22].
 - Double null ($dR_{sep} = 0$) is promising candidate for FPP.
 → ELM suppression is not feasible.
 - Needs investigation.

[C. Pazsoldan, KSTAR ROF 2021]
The comparison set shows the larger dR_{sep} leads to secondary pump-out and ELM entrance while no big difference in initial pump-out

- **Comparison set for dR_{sep} effect**
 - dR_{sep}: #29261 (-1.2cm) and #29270 (-0.6cm).
 - ELM suppression: only #29261 (1.4 kA/t)
 - Locking: #29261 (2.2 kA/t) and #29270 (2.0 kA/t).

 - **Similar 1st pump in both cases.**
 - 2nd pump in #29261.
 - (larger dR_{sep} case)
 - Highly correlated to ELM sup.

 How dR_{sep} leads to the differences?
Difficulty of accessing 2nd pump-out with smaller dRsep can be understood with weaker plasma response

- #29261(-1.2 cm) vs #29270 (-0.6 cm)
 - Numerically reproduced dR_{sep} effect.
 - Weaker peeling or kink response with smaller dR_{sep}.
 - Consistent to previous work. [M. Shafer/S. Gu 22]
 - 25-40% smaller responses by smaller dR_{sep}.
 - Leads to the smaller island.
 - Smaller 2nd pump.
 - But why similar 1st pump?
Modeling suggests the similar 1st pump may be due to the compensated effect, addressing the benefit of hybrid simulation.

- \#29261(-1.2 cm) vs \#29270 (-0.6 cm)
 - 25-40\% smaller responses by smaller dR_{sep}.
 - \(\Rightarrow\) But why similar 1st pump?
 - Modeling suggests a “compensated” effect from kink response.
 - \(\Rightarrow\) The benefit of MHD-NTV integrated simulation.

<table>
<thead>
<tr>
<th>1st pump</th>
<th>Island transport</th>
<th>NTV</th>
</tr>
</thead>
<tbody>
<tr>
<td>#29261 (-1.2 cm)</td>
<td>-</td>
<td>\textbf{Bigger} by larger kinking</td>
</tr>
<tr>
<td>#29270 (-0.6 cm)</td>
<td>\textbf{Bigger} by weaker damping from kinking</td>
<td>\textbf{Smaller} by weaker kinking</td>
</tr>
</tbody>
</table>

![Graph showing time vs. ped density and NTV values](image)

AAPPS-DPP, Oct 12. 2022
Outline

• Introduction
 - Bifurcating pump-outs by RMPs.
 - Nonlinear modeling with toroidal effect.

• Method
 - JOREK (nonlinear 3D MHD) and PENTRC (NTV) code coupling.

• Result
 - Pump-out: Led by field penetration (island opening).
 - 1st pump: ExB flow damping, polarization, and NTV.
 - 2nd pump: Mode overlap and stochastization.
 - Additional case: dR_{sep} effect can be reproduced.

• Conclusion
Nonlinear modeling reveals the role of importance of hybrid simulation, but it must overcome the prevailing limitations

- **Pump-out in coupled nonlinear toroidal MHD simulation**
 - Initiated by MHD response (field penetration):
 - Supports the viability of prediction using reduced geometry!
 - Role of toroidal geometry and near-resonant component.
 - NTV (1st) and mode coupling effect (2nd).
 - Reproduced dR_{sep} effect.
 - Benefits of integrated MHD-NTV simulation.

- **Remaining challenges**
 - Overcome the limitations of heuristic and MHD approach.
 - Improved NTV coupling.
 - Importance of micro-instabilities.
 - Free boundary 3D treatment [Verena, JPC 22].
 - Connecting ELM suppression and pump-out simulation.
Thank you