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Introduction

⦁ CAKE (Consistent Automatic Kinetic Equilibrium reconstruction) [1]
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Many iteration
Costly computation (Not RT feasible)

Real-time kinetic EFIT is now ready by using neural net 
acceleration (CAKE-NN)

[1] Z Xing et al, Fus. Eng. Des. 163 (2021) 112163

(CAKE02)

~10% uncertainty
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Neural network architecture for CAKE-NN
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Training data collection

⦁ Shots: 178000 - 192000 in DIII-D (MSE, Thomson, CER available)

⦁ Interval: 100 ms averaged

⦁ Prediction outputs: p(ψN), 1/q(ψN), j(ψN), ne(ψN), Te(ψN), Ti(ψN), Vtor(ψN)

⦁ Spatial resolution: 32 for core & 32 for edge

⦁ ~10000 samples after filtering outliers

⦁ Train:Validation:Test = 7:2:1
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Training results of CAKE-NN
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- The error of CAKE-NN is ~10%, which is the same level as the uncertainty of CAKE.

- CAKE-NN has similar reliability to CAKE, but much faster than that (real-time feasible!).

ψN=0.9
ψN=0.5
ψN=0.0

⦁ Regression for test dataset: Good!
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Training results of CAKE-NN
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⦁ Prediction examples: Capturing physics patterns

- CAKE-NN successfully captures different physics patterns such as the pedestal structure and 
bootstrap current in L- and H-mode plasmas.

L-mode
190919_4800

H-mode
191005_5000
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Training results of CAKE-NN
⦁ Prediction examples: Robustness in extreme cases

- CAKE is an automated system, so there can be unreliable results when measurements are noisy or missing.

- CAKE-NN shows more reasonable predictions for noisy inputs -> More robust for real-time implementation.

- But CAKE-NN shows quite jagged profiles for extreme cases: post-processing needed.

Strong ITB
190895_3600

Better than 
CAKE
190899_4900 Negative gradient in CAKE: 

not really reliable



M. Name/ Meeting / Time

Training results of CAKE-NN
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⦁ Physical reliability

- Real-time prediction and control using CAKE-NN requires enough reliability to estimate 
physical information (ex. q=2 surface, pedestal height).

1. Estimation of (q = 2 and 3) surface

q=2
q=3

- Good (Δ(ψN) < 0.1).
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Training results of CAKE-NN

10

⦁ Physical reliability

- Real-time prediction and control using CAKE-NN requires enough reliability to estimate 
physical information (ex. q=2 surface, pedestal height).

  2.    Estimation of pedestal information

- Pedestal height prediction is 
good.

- Pedestal current density 
prediction needs further 
improvement.
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Summary & Future works
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● Summary

- The NN acceleration of CAKE has been done for real-time implementation.
- CAKE-NN showed reasonable prediction accuracy for various cases.

● Future works

- Further optimization will be done (NN architecture, spatial resolution, …) to improve the 
accuracy.

- Post-processing should be considered for the output profiles.
- PCS implementation on DIII-D will be done (~ 1 month).

- Possible applications: q=2 surface control, profile control, RT pedestal estimation, RT stability 
analysis
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Thank you!


