

Mechanical and Aerospace Engineering Princeton Plasma Control **control.princeton.edu**

Feedback Adaptive RMP ELM Control on DIII-D and KSTAR Towards robust, performance optimized long pulse ELM suppression

Ricardo Shousha

Co-authors: S.K. KIM, K.G. ERICKSON, J.-K. PARK, S.M. YANG, A.O. NELSON, N.C. LOGAN, Q.M. HU, M.W. KIM, G. SHIN, S.-H. HAHN, C. PAZ-SOLDAN, R. WILCOX, A. BATTEY, W.H. KO, G.Y. PARK, Y.M. JEON, J. ABBATE, A. ROTHSTEIN and E. KOLEMEN

Department of Mechanical and Aerospace Engineering Princeton University

Mechanical and Aerospace Engineering Princeton Plasma Control **control.princeton.edu**

Feedback Adaptive RMP ELM Control on DIII-D and KSTAR Towards robust, performance optimized long pulse ELM suppression

Ricardo Shousha

Co-authors: S.K. KIM, K.G. ERICKSON, J.-K. PARK, S.M. YANG, A.O. NELSON, N.C. LOGAN, Q.M. HU, M.W. KIM, G. SHIN, S.-H. HAHN, C. PAZ-SOLDAN, R. WILCOX, A. BATTEY, W.H. KO, G.Y. PARK, Y.M. JEON, J. ABBATE, A. ROTHSTEIN and E. KOLEMEN

Department of Mechanical and Aerospace Engineering Princeton University

H-mode is promising for fusion because of increased performance. However, at the expense of instabilities

- By "default" plasma in L-mode
- When sufficient external heating applied, plasma enters H-mode
 - Elevated core pressure enabled by edge transport barrier
 - Steep edge gradient can destabilize Edge Localized Modes (ELM)
 - ELMs are quasi-periodic expulsions of particle and heat to vessel wall

Do we need to deal with this...?

'advanced' operation Internal transport barrier H-mode: Edge transport pressure H-mode barrier L-mode Ohmic 1.0 radius H-mode pedestal

Pressure profile in Ohmic, L- and H-mode

N.C. Lopes Cardozo FOTBOAE lecture notes TU/e 2015

In Fusion-scale devices (ITER), the ELM transients are likely to exceed material limits and need to be dealt with

- Thermal cycling
 - Tungsten cracking
 - Brittle
- Tungsten erosion (physical sputtering)
 - Migration
 - Redeposition
 - Tritium retention
 - Unwanted conduction
- Lots of problems that don't scale well.
- ELMs need to be <u>controlled</u> or avoided

ELMs can be suppressed using specific 3D magnetic perturbations, but feedback needed to regain performance

- ELM suppression through application 3D Resonant Magnetic Perturbation (RMP) discovered by late Todd Evans (2004)
- However, there are challenges:
- "ELM-suppression window" required
 - RMP amplitude for ELM suppression unknown a-priori
 - Evolves with plasma
- <u>RMP reduces plasma performance</u> (confinement)

T.E. Evans et al, PRL 2004

- > Feedback Adaptive RMP ELM Controller could provide solutions:
 - Use RT-ELM detector to monitor ELM activity
 - Use ELM detection to inform RMP spectrum to 3D coils to achieve suppression
 - > Once suppression is achieved, optimize plasma performance by reducing RMP, exploiting hysteresis effect

Main Idea: Let controller try to reduce applied RMP amplitude while sustaining ELM suppression, to maximize performance

R.Shousha – PPPL MONTHLY

Controller recovers 60% of confinement degradation using amplitude feedback and adaptive lower bound on KSTAR

Adaptive Lower bound:

- Controller stores RMP amplitude in case of loss of suppression
- Controller tries to regain suppression
- Controller does NOT allow RMP amplitude below adaptive lower bound

Observations:

- Discharge mostly ELM suppressed by feedback
- Feedback allows to stay well below locking threshold, and mostly just above suppression threshold
- Inherently needs to LOSE ELM suppression AT LEAST ONCE to optimize → Not desired!

Challenge I: Need to avoid initial ELMs after LH-transition

Controller recovers 60% of confinement degradation using amplitude feedback and adaptive lower bound on KSTAR

Challenge:

RMP hinders LH-transition, but any LH transition **Adaptive RMP** KSTAR #31189 and all ELMs after transition **I**_{RMP} 4 should be avoided **ML-triggered Recovery** 3 - $\beta_{\rm N}$ Solution: 2 · **Early suppression** Control-**Control** issues Use ML LH-transition detector induced 1 -**Sporadic** [Shin, Ko, Kim] to trigger initial Dα feed-forward RMP before handing o 1.0 4.0 Time [s] 7.0 10.0 off to feedback performance optimization

✓ Feedback Initialization allows smooth takeover of FF by controller
 ✓ Early ramp at detected LH-transition promising method for eliminating initial ELMs in H-mode

Challenge II: Need to detect ELMs BEFORE they happen and take action

Precursor patterns prior to loss of ELM suppression visible on D-a and Mirnov signals on KSTAR

- Diagnostics that show precursors to loss of ELM suppression:
- 1) The D_{α} signal characteristics:
 - Rapid sustained dip before ELM
- 2) The Mirnov probe signal characteristics:
 - Rapid sustained reduction in standard deviation before ELM

Time scales that need to be considered (and can be device specific, here just rough est.):

• pedestal confinement time ($\tau_{ELM} \sim 10-50$ ms)

Example of typical suppression-loss precursors on KSTAR #26004 ~15 ms a.u. 1.2 1.1 ľ/s 1 0.9 .0.8 ľ/s 0.7 T/s 0.6 0.5 Γ/s 0.4 -20 7.75 7.8 7.85 7.5 7.55 8.5 q 9.5 7.6 7.65 7.7 8 Time (s) Time (s)

- ➤ The instability itself is very fast (~1ms) so no use to detect
- \blacktriangleright Precursor needs to be detected at least \sim 10ms before the ELM on KSTAR

Precursor detector avoids false positives by integration with ELM detector

R.Shousha – PPPL MONTHLY

RT-precursor detection + *jump scheme* <u>can</u> avoid imminent ELMs, but more optimization is needed to increase reliability

Challenge:

Can we avoid an imminent ELM after detecting a precursor?

Solution:

- 1) Precursor detector detects precursor
- If Jump-scheme active, controller jumps up by amount 2) ΔI_{JUMP}
- 3) Controller holds RMP at elevated level for $\Delta t_{IUMPWIDTH}$
- 4) After $\Delta t_{IUMPWIDTH}$ has elapsed, controller goes back to previous level, modified by offset $\Delta I_{JUMPOFFSET}$

12

●.0. a.u. 0.4 0.2 β_{p} #31607 β_{p} #31608 1.35 1.3 Confinement imbroveme 1.25 NO event event I_{RMP} #31607 ו_{ו R} #31607 $\Delta t_{PROBESTEADY}$ $\Delta t_{PROBESTEADY}$ I_{RMP} #31608 ≰^{4.5}। $\Delta I_{PROBEOFFSET}$ $\Delta I_{PROBEOFFSET}$ I_{LB} #31608 ΔI_{PROBF} ΔI_{PROB} ctive probing enabled $\Delta t_{PROBEWIDTH}$ $\Delta t_{PROBEWIDTH}$ 3.5 35 25 30 40 POSTPROBE PREPROBE Time (s) 14 R.Shousha – PPPL MONTHLY 2/8/23

(a)

0.8

Lower bound evolves with plasma in long pulse. Can marginal stability be probed to adjust lower bound?

Solution:

- 1) Lower bound is activated and preventing RMP from decreasing
- Once probing activated, controller applies downward pulse 2) (customizable)
 - 1) If PREPROBE, controller starts checking for precursors DURING pulse and exit immediately at time of event
 - 2) If POSTPROBE, controller starts checking for precursors AFTER downward pulse (to study transients)

 \rightarrow Result: Effective at reducing lower bound, but not able to prevent all ELMs that follow precursor yet

Confinement improvement by active probing scheme in long pulse #31607 vs. #31608

 \mathbf{D}_{α} #31607

 D_{α} #31608

RT-precursor detection + *active probing scheme* <u>can</u> reduce lower bound in long pulse, but more optimization needed for reliability **Challenge:**

Challenge III: Need to implement more "brains" in controller

R.Shousha – PPPL MONTHLY

16

Selected Control Achievements

When combining all LPT efforts in long pulse attempt, we achieve considerable ELM suppression and show potential for optimized LP

Idea:

- Use Feedback Adaptive RMP ELM Controller in I_UP RATIO amplitude feedback
- Use ERMP optimal amplitude ratios computed by S.M. Yang
- Use ML trigger developed by [Shin, Ko, Kim]
- 4) Use scenario
 development by LPT
 team under leadership
 J.-K. Park

2022 (1):

- Record length Feedback ELM suppressed discharge
 However:
- Sporadic ELMs in early phase made controller set LB high
- Probing not turned on so no LB reduction possible
- Confinement could not be optimized due to absence probing

2022 (2):

 Active probing successfully used to reduce LB

However:

 Due to some shape control issues causing ELMs in early phase, not perfect trophy shot yet Feedback controlled Long Pulse ELM suppression discharge #31607

Thank You