
DESC Suite: Integrated Stellarator Optimization

Egemen Kolemen, Prof. Princeton Univ./PPPL
With Daniel Dudt, Rory Conlin, Dario Panici, Patrick Kim, Kaya Unalmis, Eduardo Rodriguez,

Aza Jalalvand

Simons NYC Meeting / May 2023
1

What is the ideal way to optimize stellarators?

• Constraints g(x):
• MHD equilibrium
• Physicist insight: Analytical calculations (e.g. NEA)
• Engineer insight: e.g. A<5, …

• Objectives f(x):
• Quasi-symmetry
• Turbulence
• …

• Physicist/engineer insight: relative importance of f(x)

What is the ideal way to optimize stellarators?

• We don’t exactly know what we want
• We are not looking for one optimum but series of optima in

the space defined by the physicist/engineer
• A map gphysicist è Optima

Then Call A Fast Code

Fast= GPU + Jacobian

è

Then Call A Fast Code

Constraints: gphysicist =Fix NEA
+ g= MHD

Eq.
Optimize remaining volume

Fast= GPU + Jacobian

è

è

1. Don’t specify R, Z surface Fourier! It is 2x the needed # param. on surface (x5 Poincare)
• Why specify looping/intersecting, over constrained parameters we have no intuition for? And %100 will

give non-nested solutions?

2. Specify core with NEA (maybe +-%10 inequality constraint): underconstrained

• Extra: if you want QI specify the phase space parameterization.

3. Stop the loopy optimization (perturb > project)!
• Use Augmented Lagrangian or Interior Point methods

• Force balance will be satisfied not with a loop within a loop but by the optimizer

4. Problem is way simpler! Physicists just need to write their cost function for high level
physics (turbulence, radiation,…)

Final Take: Fix the core, do proper constrained optimization

6

DESC is a new tool for stellarator optimization

7

Accurate Equilibria Fast Optimization Phase-Space Connections

perturb tokamak into stellarator

• Stellarator equilibria are complicated
• Design space is much larger than tokamaks

A flexible stellarator optimization suite

8

DESC

Constraints f(x)

Objectives g(x)

Equilibrium

• Fixed-boundary surface
• Pressure profile
• Current/rotational transform
• Total toroidal magnetic flux

• Ideal MHD force balance
• Energy

Optimization
Algorithm

Gradient
Information

A flexible stellarator optimization suite

9

DESC

Constraints f(x)

Objectives g(x)

Optimized Stellarator

• Ideal MHD force balance
• Equilibrium profiles
• Some boundary modes

• Quasi-symmetry
• Mercier stability
• Aspect ratio
• etc.

Optimization
Algorithm

Gradient
Information

Why do we need another stellarator code?
Equilibrium solvers: VMEC, NEAR, PIES, HINT, SPEC, GVEC, etc.
Optimization codes: STELLOPT, ROSE, WISTELL, SIMSOPT, etc.

1. Better understand the solution space of stellarator equilibria

2. Integrate the equilibrium solver with optimization tools
3. Avoid Jacobian approximations, near-axis expansions, low-β expansions, etc.

4. Use modern numerical methods and scientific computing practices

10

Developed with the following design
principles:

11

1. Simple user interface
• Open-source Python code
• Well documented
• High test coverage
• Easy to install

2. Local error quantification
• Pseudo-spectral (collocation) methods

3. Properly resolve the magnetic axis
• Global basis functions
• Zernike polynomials

4. Exact derivatives of all objectives
• Automatic differentiation

5. Hardware agnostic
• Run on CPUs, GPUs, and TPUs

6. Extendable to new applications
• Modular & flexible code structure

Zernike spectral basis inherently satisfies
boundary conditions at the magnetic axis

12

𝑋 𝜌, 𝜃, 𝜁 = '
!"#

𝑋!"#𝒵!" 𝜌, 𝜃 ℱ#(𝜁)

• Periodic boundary conditions for poloidal & toroidal angles

• Satisfies analyticity conditions at the magnetic axis:

𝑓 𝜌, 𝜃 ='
"
𝜌" 𝑎",% + 𝑎",&𝜌& +⋯ cos 𝑚𝜃

+'
"
𝜌" 𝑏",% + 𝑏",&𝜌& +⋯ sin 𝑚𝜃

• Exponential convergence (if solution exists and is smooth)

𝑙, 𝑚 = (0,0)

(2,0)

(4,0)

(1, −1) (1, +1)

(2, −2) (2, +2)

(3, −1) (3, +1)(3, −3) (3, +3)

(4, +2) (4, +4)(4, −2)(4, −4)

sin 𝜃 modes cos 𝜃 modes

Boyd et al., J. Comput. Phys. (2011)
Lewis et al., J. Math. Phys. (1990)

spectral coefficients Zernike polynomials

Fourier series

Spectral methods yield more accurate
equilibrium solutions

13

Accurately resolving the magnetic axis is
important for stability calculations

14

VMEC requires high radial
resolution to resolve axis

DCON3D collaboration

Run times:
• DESC = 0.2 GPU-hours

(NVIDIA A100)
• VMEC = 5.2 CPU-hours

(AMD Opteron 6276)

Landreman & Sengupta, J. Plasma Phys. (2019)

Continuation method example: from tokamak to 3D
stellarator boundary

15

Strength of 3D modes

Initial solution
axisymmetric boundary
(tokamak) Final solution

strongly shaped
stellarator

Intermediate solutions

Solving Highly-Shaped Boundaries in DESC

– Equilibrium which SPEC/VMEC have trouble with
– According to Joaquim Loizu

Specifying surface shape is not ideal

• Our aim is to optimize (not solve for equil.)
• We are not interested in any non-nested solutions
• You need n*m parameters to specify a toroidal

surface
• R, Z Fourier Series need 2*n*m
• There are n*m hidden constraints (a pain for

optimization)
• Loops/intersections occur
• There exists ways to represent the problem with

lower dimensional setup

INPUT: R,Z of LCFS at 𝝆=1

Novel boundary conditions to better
parameterize stellarator design space

INPUT: R,Z of LCFS at 𝝆=1

INPUT: R,Z, 𝝀 of Poincare XS at 𝝵=0

18

• Poincare section requires
much fewer number (x5) of
input coefficients to describe
boundary condition

• Potentially restrict to only
solutions with nested flux
surfaces

● Idea is to constrain the global equilibrium to
have NAE behavior as 𝝆→𝟢
○ only use information from NAE where it is most

valid
○ Avoid singular behavior present when

evaluating at large r
● Map NAE coefficients to Fourier-Zernike

modes of DESC to fix O(𝝆0) (axis) and O(𝝆1)
behavior

Easy to Fix the Core in DESC

pyQSC equilibrium evaluated at r =0.1

Near-Axis-Expansion Constrained Equilibria in DESC

• Global equilibria solutions with near-axis behavior constrained to match the NAE to O(𝝆)
• Enables the connection between global MHD equilibria solutions and the existing insight on

optimized stellarators

Free boundary DESC
● Agrees with field line

tracing for vacuum cases.

● Disagrees with VMEC at
finite pressure/current

● Using re-implementation
of NESTOR, benchmarked
against original

● Also re-implemented high
order method from
Malhotra (2019)

○ Not getting
expected level of
convergence

● Exploring other methods
to avoid singular integrals
entirely

Vacuum 𝛽 = 2%

Gradient computations are the bottleneck of
traditional stellarator optimization

22

• 𝑔 𝒄 = cost function to be minimized; 𝒄 = optimization variables
• Gradient descent optimization:

𝒄#'(= 𝒄# − 𝛾∇𝑔 𝒄#

Finite Differences:
• Requires ≥ dim 𝒄 equilibrium solves
• Inaccurate and sensitive to step size

Adjoint methods:
• Not applicable to all objectives
• Laborious to implement

Efficient computing with the ease of Python

23

Automatic Differentiation (AD)
• Optimization requires derivative information
• Exact derivatives of arbitrary functions to any order

Just-In-Time (JIT) Compilation
• Comparable speed to C or Fortran compiled languages
• Hardware agnostic (CPU, GPU, TPU)

Requires specific code structure, but easy to implement: import jax.numpy as jnp

DESC optimization only requires a single
equilibrium solve per iteration

24

1. Newton optimization step with equilibrium constraint
𝒄!"# = 𝒄! + Δ𝒄

𝜕𝒈
𝜕𝒙"

𝜕𝒇
𝜕𝒙"

#$ 𝜕𝒇
𝜕𝒄"

−
𝜕𝒈
𝜕𝒄

Δ𝒄 = 𝒈 𝒙", 𝒄"

2. Perturb equilibrium solution to reflect new
parameters

𝒙!"# = 𝒙! + Δ𝒙

Δ𝒙 = −
𝜕𝒇
𝜕𝒙!

$# 𝜕𝒇
𝜕𝒄!

Δ𝐜

3. Re-solve equilibrium from this close initial guess
𝒙!"# = argmin𝒙 𝒇 𝒙, 𝒄!"# &

𝒇 = equilibrium constraint
𝒈 = optimization objective

𝒙 = equilibrium solution
𝒄 = optimization variables

Only 1 “warm-start”
equilibrium solve per

optimization step!

Exact Jacobians known from
automatic differentiation!

Fast computations enable exploration of the
large stellarator design space

25

• Finite differences scale unfavorably
• Parallelization can help reduce wall

time, but not total resources
• GPU hardware is still improving

Hardware Run Time
Intel Cascade Lake CPU 48 min
NVIDIA A100 GPU 20 min

W7-X 𝛽 = 2%; 𝐿 = 24,𝑀 = 𝑁 = 12

Run optimizations in a few lines of Python code
set_device("gpu") # run on a GPU

eq = desc.io.load("path/to/initial/equilibrium.h5")

grid = LinearGrid(M=eq.M, N=eq.N, NFP=eq.NFP, rho=np.linspace(0.1, 1, 10)) # computation grid

objective = ObjectiveFunction((AspectRatio(target=8), # target aspect ratio

QuasisymmetryTwoTerm(helicity=(1, -eq.NFP), grid=grid, weight=2e-1))) # optimize for QH

optimize boundary modes with |m|,|n|<=5 (constrain boundary modes with |m|,|n|>5)

R_modes = np.vstack(([0, 0, 0], # fix major radius

eq.surface.R_basis.modes[np.max(np.abs(eq.surface.R_basis.modes), 1) > 5, :]))

Z_modes = eq.surface.Z_basis.modes[np.max(np.abs(eq.surface.Z_basis.modes), 1) > 5, :]

constraints = (ForceBalance(), FixBoundaryR(modes=R_modes), FixBoundaryZ(modes=Z_modes),

FixPressure(), FixCurrent(), FixPsi()) # fix vacuum profiles

optimizer = Optimizer("lsq-exact") # least-squares optimization algorithm

eq.optimize(objective, constraints, optimizer) # run optimization

eq.save("path/to/optimal/solution.h5")

Can find “precise quasi-symmetry” & more

27

Landreman & Paul, Phys. Rev. Lett. (2022)

DESC:
GPU-minutes

SIMSOPT:
CPU-hours

Full QI Phase Space is defined in DESC

28

• Specify the magnetic well “shape” with a monotonic spline
• Specify how the well “shifts” on different field lines with a Fourier series
• Generate arbitrary QI magnetic field targets without prior initialization
• Parameterization enables scans of the QI optimization landscape

Initial equilibrium:

• Analytic near-axis model

• 𝑂(𝜌) near-axis behavior constrained

Optimization targets:

• Unconstrained QI on multiple surfaces

• Vacuum force balance: 𝐽' = 𝐽(= 𝐽) = 0

Can Do QI Optimization (with NAE)

29

30

Can Do QI Optimization

Traditional “Loopy” Optimization

g(x)=0

Projection back onto
constraint

For Equilibrium constraints, standard
approach is a “projection” method

• When trying a new step, resolve
equilibrium subproblem before
evaluating cost

● Expensive (1+ equilibrium
solve at each step)

● Projection can undo progress
from optimizer

DESC Allow Combined Constraints + Optimization

Example: Fix NEA + eq. constraint + optimize remaining volume

g(x)=0

Contours of f(x)

Initial guess

Follow
feasible path

Can’t move without
increasing objective or
violating constraint

Constraint violation
allows fast progress
towards true optimum

Combine equality + inequality constraints

Choose small weight for inequality constraints to enforce “approximately”
Choose large weight for equality constraints to penalize a lot

Limitations:
• Hard to guess a-priori what weights should be
• Even small weights for “inequality” constraints can overly penalize things we

don’t care about

Current methods : Sum of Squares

• Combination of traditional Lagrangian + quadratic penalty

• Doesn’t introduce any non-smooth terms
• “Exact” method - doesn’t need 𝜇 → infinity
• Solve sequence of subproblems for increasing 𝜇, λ
• Provides estimate of true Lagrange multipliers - useful information about

trade-offs

• Open source packages available (LANCELOT, NLopt, etc). Also python/JAX
version implemented in DESC

Better methods: Augmented Lagrangian

• Introduce log barrier to deal with inequality constraints
• Solve sequence of subproblems for 𝜇 → 0

• High quality open source options (ipopt, scipy) interfaced with DESC

Better methods : Interior Point

DESC Allow Combined Constraints + Optimization

Find xk+1 = min
LA(x,λk,μk)

Calculate constraint
violation c(xk) and
check tolerances

Depending on c(xk),
update λk or μk

è

g(x)=0

Projection back onto
constraint

• Projection method resolves from boundary
at each step, enforcing force balance

• Causes solution to get stuck in local minima

• Augmented Lagrangian allows solution to
temporarily violate equilibrium to improve
QS

• Allows it to skip over local minima and
achieve better final result

Relaxing constraints during optimization allows for
better results

O = Projection
X = Augmented
Lagrangian

Combined Constraints + Optimization gives better results

Precise Quasisymmetry Example

• Simple quadratic penalty
fails to give stable
equilibrium, even for large
values of weight

• Instead applying
inequality constraint w/
augmented Langrangian
gives magnetic well > 0

Augmented Lagrangian takes guesswork out of
penalty terms

Optimizing with fixed near axis behavior

• Constrained optimizers allow more general
constraints than standard approach of
optimizing over boundary shape

• Example: Fix near axis behavior from QSC,
optimize remaining volume

Can perform coil design & optimization

41

N
orm

alized Q
uadratic Flux

Initial Final

• Fixing length of each coil
• Enforcing minimum coil-coil and coil-plasma distance
• Optimized using SLSQP algorithm from scipy

Can wrap other codes with finite differences

42

• GX is a fast (minutes) pseudo-spectral gyrokinetic code for stellarators

• Also wrapped NEO to optimize for effective ripple 𝜀'((Mandell et al., J. Plasma Phys. (2018)
Gonzalez et al., J. Plasma Phys. (2022)

Nemov et al., Phys. Plasmas (1999)

Turbulence + QS Optimization

• Initial equilibrium is a low-resolution version of a precise QH
equilibrium.

• Optimizer reduces nonlinear heat flux by about half, while maintaining
good quasisymmetry.

Turbulence + QS Optimization

Original Optimized

Machine Learning for Stellarators

Developing a database structure
and storage system for Simons
Collaborators (Aza Jalalvand)

Machine Learning for Stellarator
Equilibrium and Optimization

DESC is a new tool for stellarator optimization

46

Accurate Equilibria Fast Optimization Flexible

Better tools = better stellarator reactors!

1. Don’t specify R, Z surface Fourier! It is 2x the needed # param. on surface (x5 Poincare)
• Why specify looping/intersecting, over constrained parameters we have no intuition for? And %100 will

give non-nested solutions?

2. Specify core with NEA (maybe +-%10 inequality constraint): underconstrained

• Extra: if you want QI specify the phase space parameterization.

3. Stop the loopy optimization (perturb > project)!
• Use Augmented Lagrangian or Interior Point methods

• Force balance will be satisfied not with a loop within a loop but by the optimizer

4. Problem is way simpler! Physicists just need to write their cost function for high level
physics (turbulence, radiation,…)

Final Take: Fix the core, do proper constrained optimization

47

Ideas/Collaborations

48

• Prove Poincare section input gives unique equilibrium
• What is the minimum parameter set that define nested flux phase space?

• Search within this phase space
• Novel ideas (BEI free) for solving Free Surface Equilibrium

• Codes based on particle integration: We can do fast GPU integration and
autodiff for lightning end-end optimization. Rogerio is onboard! Anyone
else?

• Take your code to optimization school day: Let’s get f(x) g(x) out of the loop!

• New Stellarator SOL code development! Any suggestions?

Additional Resources

49

Software
• Open-source repository: https://github.com/PlasmaControl/DESC
• Python package: pip install desc-opt

Papers
• The DESC Stellarator Code Suite Part I https://arxiv.org/abs/2203.17173
• The DESC Stellarator Code Suite Part II https://arxiv.org/abs/2203.15927
• The DESC Stellarator Code Suite Part III https://arxiv.org/abs/2204.00078

The Princeton Plasma Control group is recruiting graduate students and post-docs!
Contact Egemen Kolemen: ekolemen@pppl.gov

https://arxiv.org/abs/2203.17173
https://arxiv.org/abs/2203.15927
https://arxiv.org/abs/2204.00078
mailto:ekolemen@pppl.gov

