
DESC Suite: Integrated Stellarator Optimization

Egemen Kolemen, Prof. Princeton Univ./PPPL
With Daniel Dudt, Rory Conlin, Dario Panici, Patrick Kim, Kaya Unalmis, Eduardo Rodriguez, 

Aza Jalalvand

Simons NYC Meeting / May 2023 
1



What is the ideal way to optimize stellarators?

• Constraints g(x): 
• MHD equilibrium
• Physicist insight: Analytical calculations (e.g. NEA)
• Engineer insight: e.g. A<5, …

• Objectives f(x):
• Quasi-symmetry
• Turbulence
• …

• Physicist/engineer insight: relative importance of f(x)



What is the ideal way to optimize stellarators?

• We don’t exactly know what we want
• We are not looking for one optimum but series of optima in 

the space defined by the physicist/engineer
• A map gphysicist è Optima



Then Call A Fast Code

Fast= GPU + Jacobian

è



Then Call A Fast Code

Constraints: gphysicist =Fix NEA 
+ g= MHD 

Eq.
Optimize remaining volume

Fast= GPU + Jacobian

è

è



1. Don’t specify R, Z surface Fourier! It is 2x the needed # param. on surface (x5 Poincare)
• Why specify looping/intersecting, over constrained parameters we have no intuition for? And %100 will 

give non-nested solutions?

2. Specify core with NEA (maybe +-%10 inequality constraint):  underconstrained

• Extra: if you want QI specify the phase space parameterization.

3. Stop the loopy optimization (perturb > project)!
• Use Augmented Lagrangian or Interior Point methods

• Force balance will be satisfied not with a loop within a loop but by the optimizer

4. Problem is way simpler! Physicists just need to write their cost function for high level 
physics (turbulence, radiation,…)

Final Take: Fix the core, do proper constrained optimization
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DESC is a new tool for stellarator optimization
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Accurate Equilibria Fast Optimization Phase-Space Connections

perturb tokamak into stellarator

• Stellarator equilibria are complicated
• Design space is much larger than tokamaks



A flexible stellarator optimization suite
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DESC

Constraints f(x)

Objectives g(x)

Equilibrium

• Fixed-boundary surface
• Pressure profile
• Current/rotational transform
• Total toroidal magnetic flux

• Ideal MHD force balance
• Energy

Optimization 
Algorithm

Gradient 
Information



A flexible stellarator optimization suite

9

DESC

Constraints f(x)

Objectives g(x)

Optimized Stellarator

• Ideal MHD force balance
• Equilibrium profiles
• Some boundary modes

• Quasi-symmetry
• Mercier stability
• Aspect ratio
• etc.

Optimization 
Algorithm

Gradient 
Information



Why do we need another stellarator code?
Equilibrium solvers: VMEC, NEAR, PIES, HINT, SPEC, GVEC, etc.
Optimization codes: STELLOPT, ROSE, WISTELL, SIMSOPT, etc.

1. Better understand the solution space of stellarator equilibria

2. Integrate the equilibrium solver with optimization tools
3. Avoid Jacobian approximations, near-axis expansions, low-β expansions, etc.

4. Use modern numerical methods and scientific computing practices
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Developed with the following design 
principles:
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1. Simple user interface
• Open-source Python code
• Well documented
• High test coverage
• Easy to install

2. Local error quantification
• Pseudo-spectral (collocation) methods

3. Properly resolve the magnetic axis
• Global basis functions
• Zernike polynomials

4. Exact derivatives of all objectives
• Automatic differentiation

5. Hardware agnostic
• Run on CPUs, GPUs, and TPUs

6. Extendable to new applications
• Modular & flexible code structure



Zernike spectral basis inherently satisfies 
boundary conditions at the magnetic axis
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𝑋 𝜌, 𝜃, 𝜁 = '
!"#

𝑋!"#𝒵!" 𝜌, 𝜃 ℱ#(𝜁)

• Periodic boundary conditions for poloidal & toroidal angles

• Satisfies analyticity conditions at the magnetic axis:

𝑓 𝜌, 𝜃 ='
"
𝜌" 𝑎",% + 𝑎",&𝜌& +⋯ cos 𝑚𝜃

+'
"
𝜌" 𝑏",% + 𝑏",&𝜌& +⋯ sin 𝑚𝜃

• Exponential convergence (if solution exists and is smooth)

𝑙, 𝑚 = (0,0)

(2,0)

(4,0)

(1, −1) (1, +1)

(2, −2) (2, +2)

(3, −1) (3, +1)(3, −3) (3, +3)

(4, +2) (4, +4)(4, −2)(4, −4)

sin 𝜃 modes cos 𝜃 modes

Boyd et al., J. Comput. Phys. (2011)
Lewis et al., J. Math. Phys. (1990)

spectral coefficients Zernike polynomials

Fourier series



Spectral methods yield more accurate 
equilibrium solutions
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Accurately resolving the magnetic axis is 
important for stability calculations
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VMEC requires high radial 
resolution to resolve axis

DCON3D collaboration

Run times:
• DESC = 0.2 GPU-hours 

(NVIDIA A100)
• VMEC = 5.2 CPU-hours 

(AMD Opteron 6276)

Landreman & Sengupta, J. Plasma Phys. (2019)



Continuation method example: from tokamak to 3D 
stellarator boundary
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Strength of 3D modes

Initial solution
axisymmetric boundary 
(tokamak) Final solution

strongly shaped 
stellarator

Intermediate solutions



Solving Highly-Shaped Boundaries in DESC

– Equilibrium which SPEC/VMEC have trouble with
– According to Joaquim Loizu



Specifying surface shape is not ideal 

• Our aim is to optimize (not solve for equil.)
• We are not interested in any non-nested solutions
• You need n*m parameters to specify a toroidal 

surface
• R, Z Fourier Series need 2*n*m
• There are n*m hidden constraints (a pain for 

optimization)
• Loops/intersections occur
• There exists ways to represent the problem with 

lower dimensional setup

INPUT: R,Z of LCFS at 𝝆=1



Novel boundary conditions to better 
parameterize stellarator design space

INPUT: R,Z of LCFS at 𝝆=1

INPUT: R,Z, 𝝀 of Poincare XS at 𝝵=0

18

• Poincare section requires 
much fewer number (x5) of 
input coefficients to describe 
boundary condition

• Potentially restrict to only 
solutions with nested flux 
surfaces



● Idea is to constrain the global equilibrium to 
have NAE behavior as 𝝆→𝟢
○ only use information from NAE where it is most 

valid
○ Avoid singular behavior present when 

evaluating at large r
● Map NAE coefficients to Fourier-Zernike 

modes of DESC to fix O(𝝆0) (axis) and  O(𝝆1) 
behavior

Easy to Fix the Core in DESC 

pyQSC equilibrium evaluated at r =0.1



Near-Axis-Expansion Constrained Equilibria in DESC

• Global equilibria solutions with near-axis behavior constrained to match the NAE to O(𝝆)
• Enables the connection between global MHD equilibria solutions and the existing insight on 

optimized stellarators



Free boundary DESC
● Agrees with field line 

tracing for vacuum cases.

● Disagrees with VMEC at 
finite pressure/current

● Using re-implementation 
of NESTOR, benchmarked 
against original

● Also re-implemented high 
order method from 
Malhotra (2019)

○ Not getting 
expected level of 
convergence

● Exploring other methods 
to avoid singular integrals 
entirely

Vacuum 𝛽 = 2%



Gradient computations are the bottleneck of 
traditional stellarator optimization
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• 𝑔 𝒄 = cost function to be minimized; 𝒄 = optimization variables
• Gradient descent optimization:

𝒄#'( = 𝒄# − 𝛾∇𝑔 𝒄#

Finite Differences:
• Requires  ≥ dim 𝒄 equilibrium solves
• Inaccurate and sensitive to step size

Adjoint methods:
• Not applicable to all objectives
• Laborious to implement



Efficient computing with the ease of Python
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Automatic Differentiation (AD)
• Optimization requires derivative information
• Exact derivatives of arbitrary functions to any order

Just-In-Time (JIT) Compilation
• Comparable speed to C or Fortran compiled languages
• Hardware agnostic (CPU, GPU, TPU)

Requires specific code structure, but easy to implement: import jax.numpy as jnp



DESC optimization only requires a single
equilibrium solve per iteration
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1. Newton optimization step with equilibrium constraint
𝒄!"# = 𝒄! + Δ𝒄

𝜕𝒈
𝜕𝒙"

𝜕𝒇
𝜕𝒙"

#$ 𝜕𝒇
𝜕𝒄"

−
𝜕𝒈
𝜕𝒄

Δ𝒄 = 𝒈 𝒙", 𝒄"

2. Perturb equilibrium solution to reflect new 
parameters

𝒙!"# = 𝒙! + Δ𝒙

Δ𝒙 = −
𝜕𝒇
𝜕𝒙!

$# 𝜕𝒇
𝜕𝒄!

Δ𝐜

3. Re-solve equilibrium from this close initial guess
𝒙!"# = argmin𝒙 𝒇 𝒙, 𝒄!"# &

𝒇 = equilibrium constraint
𝒈 = optimization objective

𝒙 = equilibrium solution
𝒄 = optimization variables

Only 1 “warm-start” 
equilibrium solve per 

optimization step!

Exact Jacobians known from 
automatic differentiation!



Fast computations enable exploration of the 
large stellarator design space
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• Finite differences scale unfavorably
• Parallelization can help reduce wall 

time, but not total resources
• GPU hardware is still improving

Hardware Run Time
Intel Cascade Lake CPU 48 min
NVIDIA A100 GPU 20 min

W7-X 𝛽 = 2%; 𝐿 = 24,𝑀 = 𝑁 = 12



Run optimizations in a few lines of Python code
set_device("gpu")  # run on a GPU

eq = desc.io.load("path/to/initial/equilibrium.h5")

grid = LinearGrid(M=eq.M, N=eq.N, NFP=eq.NFP, rho=np.linspace(0.1, 1, 10))  # computation grid

objective = ObjectiveFunction((AspectRatio(target=8),  # target aspect ratio

QuasisymmetryTwoTerm(helicity=(1, -eq.NFP), grid=grid, weight=2e-1)))  # optimize for QH

# optimize boundary modes with |m|,|n|<=5 (constrain boundary modes with |m|,|n|>5)

R_modes = np.vstack(([0, 0, 0],  # fix major radius

eq.surface.R_basis.modes[np.max(np.abs(eq.surface.R_basis.modes), 1) > 5, :]))

Z_modes = eq.surface.Z_basis.modes[np.max(np.abs(eq.surface.Z_basis.modes), 1) > 5, :]

constraints = (ForceBalance(), FixBoundaryR(modes=R_modes), FixBoundaryZ(modes=Z_modes),

FixPressure(), FixCurrent(), FixPsi())  # fix vacuum profiles

optimizer = Optimizer("lsq-exact")  # least-squares optimization algorithm

eq.optimize(objective, constraints, optimizer)  # run optimization

eq.save("path/to/optimal/solution.h5")



Can find “precise quasi-symmetry” & more
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Landreman & Paul, Phys. Rev. Lett. (2022)

DESC: 
GPU-minutes

SIMSOPT:
CPU-hours



Full QI Phase Space is defined in DESC
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• Specify the magnetic well “shape” with a monotonic spline 
• Specify how the well “shifts” on different field lines with a Fourier series 
• Generate arbitrary QI magnetic field targets without prior initialization 
• Parameterization enables scans of the QI optimization landscape 



Initial equilibrium:

• Analytic near-axis model

• 𝑂(𝜌) near-axis behavior constrained

Optimization targets:

• Unconstrained QI on multiple surfaces

• Vacuum force balance: 𝐽' = 𝐽( = 𝐽) = 0

Can Do QI Optimization (with NAE)
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Can Do QI Optimization



Traditional “Loopy” Optimization

g(x)=0

Projection  back onto 
constraint

For Equilibrium constraints, standard 
approach is a “projection” method

• When trying a new step, resolve 
equilibrium subproblem before 
evaluating cost

● Expensive (1+ equilibrium 
solve at each step)

● Projection can undo progress 
from optimizer



DESC Allow Combined Constraints + Optimization

Example: Fix NEA + eq. constraint + optimize remaining volume

g(x)=0

Contours of f(x)

Initial guess

Follow 
feasible path

Can’t move without 
increasing objective or 
violating constraint

Constraint violation 
allows fast progress 
towards true optimum



Combine equality + inequality constraints

Choose small weight for inequality constraints to enforce “approximately”
Choose large weight for equality constraints to penalize a lot

Limitations:
• Hard to guess a-priori what weights should be
• Even small weights for “inequality” constraints can overly penalize things we 

don’t care about

Current methods : Sum of Squares



• Combination of traditional Lagrangian + quadratic penalty

• Doesn’t introduce any non-smooth terms
• “Exact” method - doesn’t need 𝜇 → infinity
• Solve sequence of subproblems for increasing 𝜇, λ
• Provides estimate of true Lagrange multipliers - useful information about 

trade-offs

• Open source packages available (LANCELOT, NLopt, etc). Also python/JAX 
version implemented in DESC

Better methods: Augmented Lagrangian



• Introduce log barrier to deal with inequality constraints
• Solve sequence of subproblems for 𝜇 → 0

• High quality open source options (ipopt, scipy) interfaced with DESC

Better methods : Interior Point



DESC Allow Combined Constraints + Optimization

Find xk+1 = min 
LA(x,λk,μk)

Calculate constraint 
violation c(xk) and 
check tolerances

Depending on c(xk), 
update λk or μk

è

g(x)=0

Projection  back onto 
constraint



• Projection method resolves from boundary 
at each step, enforcing force balance

• Causes solution to get stuck in local minima

• Augmented Lagrangian allows solution to 
temporarily violate equilibrium to improve 
QS

• Allows it to skip over local minima and 
achieve better final result

Relaxing constraints during optimization allows for 
better results

O = Projection
X = Augmented 
Lagrangian



Combined Constraints + Optimization gives better results

Precise Quasisymmetry Example



• Simple quadratic penalty 
fails to give stable 
equilibrium, even for large 
values of weight

• Instead applying 
inequality constraint w/ 
augmented Langrangian 
gives magnetic well > 0

Augmented Lagrangian takes guesswork out of 
penalty terms



Optimizing with fixed near axis behavior

• Constrained optimizers allow more general 
constraints than standard approach of 
optimizing over boundary shape

• Example: Fix near axis behavior from QSC, 
optimize remaining volume



Can perform coil design & optimization
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N
orm

alized Q
uadratic Flux

Initial Final

• Fixing length of each coil
• Enforcing minimum coil-coil and coil-plasma distance
• Optimized using SLSQP algorithm from scipy



Can wrap other codes with finite differences
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• GX is a fast (minutes) pseudo-spectral gyrokinetic code for stellarators

• Also wrapped NEO to optimize for effective ripple 𝜀'(( Mandell et al., J. Plasma Phys. (2018)
Gonzalez et al., J. Plasma Phys. (2022)

Nemov et al., Phys. Plasmas (1999)



Turbulence + QS Optimization

• Initial equilibrium is a low-resolution version of a precise QH 
equilibrium.

• Optimizer reduces nonlinear heat flux by about half, while maintaining 
good quasisymmetry.



Turbulence + QS Optimization

Original Optimized



Machine Learning for Stellarators

Developing a database structure 
and storage system for Simons 
Collaborators (Aza Jalalvand)

Machine Learning for Stellarator 
Equilibrium and Optimization



DESC is a new tool for stellarator optimization
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Accurate Equilibria Fast Optimization Flexible

Better tools = better stellarator reactors!



1. Don’t specify R, Z surface Fourier! It is 2x the needed # param. on surface (x5 Poincare)
• Why specify looping/intersecting, over constrained parameters we have no intuition for? And %100 will 

give non-nested solutions?

2. Specify core with NEA (maybe +-%10 inequality constraint):  underconstrained

• Extra: if you want QI specify the phase space parameterization.

3. Stop the loopy optimization (perturb > project)!
• Use Augmented Lagrangian or Interior Point methods

• Force balance will be satisfied not with a loop within a loop but by the optimizer

4. Problem is way simpler! Physicists just need to write their cost function for high level 
physics (turbulence, radiation,…)

Final Take: Fix the core, do proper constrained optimization
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Ideas/Collaborations
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• Prove Poincare section input gives unique equilibrium
• What is the minimum parameter set that define nested flux phase space?

• Search within this phase space
• Novel ideas (BEI free) for solving Free Surface Equilibrium

• Codes based on particle integration: We can do fast GPU integration and 
autodiff for lightning end-end optimization. Rogerio is onboard! Anyone
else? 

• Take your code to optimization school day: Let’s get f(x) g(x) out of the loop!

• New Stellarator SOL code development! Any suggestions?



Additional Resources
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Software
• Open-source repository: https://github.com/PlasmaControl/DESC
• Python package: pip install desc-opt

Papers
• The DESC Stellarator Code Suite Part I https://arxiv.org/abs/2203.17173
• The DESC Stellarator Code Suite Part II https://arxiv.org/abs/2203.15927
• The DESC Stellarator Code Suite Part III https://arxiv.org/abs/2204.00078

The Princeton Plasma Control group is recruiting graduate students and post-docs! 
Contact Egemen Kolemen: ekolemen@pppl.gov

https://arxiv.org/abs/2203.17173
https://arxiv.org/abs/2203.15927
https://arxiv.org/abs/2204.00078
mailto:ekolemen@pppl.gov

