Cross-verification and validation of tokamak plasma evolution models

Joe Abbate^{1,2}

with E. Fable³, A. Pankin¹, G. Tardini³, E. Kolemen^{1,2}

¹PPPL, ²Princeton University, ³Max-Planck-Institut

Presented at TTF

May 2023

Summary

- Validate Te/Ti predictors using state-of-theart but general settings
 - Run on ~hundreds of cases automatically
 - Compare multiple independent implementations (TRANSP and ASTRA)
 - Compare against empirical (linear regressed) models to contextualize error
- Find no significant statistical difference in Te/Ti predictions between TRANSP, ASTRA, and empirical model

- Inputs:
 - EFIT01 (no kinetic constraint) q
 - ZIPFIT ne, rotation, Zeff profiles
 - Te and Ti boundary at $\rho = 0.8$
- 900ms simulation
- TGLF SAT2, same settings except nky

	TRANSP	ASTRA
Fast ions	NUBEAM	RABBIT
Equilibrium	(input directly)	SPIDER
Ion heat	+viscosity +cold-neutral CX	
Neoclassical diffusion	Modified Chang-Hinton	Angioni-Sauter (e) Galeev-Sagdeev (i)
TGLF nky	12	19

Verification: ASTRA and TRANSP yield similar results

shot 191577, time=2.70s

• Exclude

- wave-heating
- 3D field perturbations
- Non-D2 gas
- Rampup and rampdown
- Shots before year 2010
- OMFIT modules
 - ASTRA: compiled + debugged + user-interface for GA (Iris) cluster
 - AGGregate: automatically mass prepare + launch TRANSP/ASTRA jobs

ASTRA and TRANSP converge in ~half of cases, runs take ~hrs (wall-clock) ASTRA less robust, TRANSP higher runtime

J. Abbate / PPPL / May 2023

Metrics and figures of merit

Metrics to consider: Te, Ti, and W_{MHD}

 $W_{MHD} = \int (p_{thermal} + p_{fast ions}) dV$

ITER standard figures of merit used to measure accuracy

Baselines for comparison: W_{MHD} from H89/98 (w/ linear regression) Te and Ti from profile consistency w/ linear regression

"Nondimensionalization"1

 $\widehat{W}_{MHD} = P_{tot}\tau_{H\{89,98\}}$ $P_{tot} = P_{NBI} + 0.55MW$

1988 Profile Consistency: Global and nonlinear transport ³Coppi

8

J. Abbate / PPPL / May 2023

TRANSP and ASTRA qualitatively capture time-dependent changes

Full database: TRANSP/ASTRA within $\sim 5\%$ Empirical Te/Ti also within $\sim 5\%$, but $W_{MHD} > \sim 10\%$ worse

Conclusions and next steps: as we know, codes just one component to predict

- Developers are aware of models' limitations: primarily used not predictively but for
 - Qualitative scaling
 - Physics understanding
 - Extrapolation to unexplored regimes
- BUT similar transport prediction workflows still used to plan
 - Reactors
 - Scenarios
 - Machine upgrades
- In practice, code outputs are combined with experience + empirical scalings
- Use machine learning to try a task humans have always done:
 - More rigorously understand where and when to trust codes vs empirical data
 - Maintain extrapolability to new regimes with power of empirical models
- Start by predicting difference from code to experiment value (w/ database we made)

- Expt title: "Effects of upstream power and heat flux width on the SAS-VW heat flux profile; influence of radiative and neutral heating"
 - Detachment studies
- Al Hyatt (shot log): "Very strange behavior. betan and density and li all seem to oscillate at a few hertz until the plasma density reaches about 4-5+13. Strike is almost perfect, maybe a little (~1 mm) too far out."

Detailed heat source comparison

Detailed TGLF settings

- sat_rule: 2
- use_bper but not bpar
- kygrid_model: 1
- wdia_transp: 1
- xnu_model: 3
- alpha_quench: 0
- n_species: 3 (electrons, ions, impurity)
- n_modes: 3
- ibranch=-1
- etg factor: 1.25
- gaussian width: 1.65
- growth rate search for max width from 0.3 to 21
- units: cgyro

