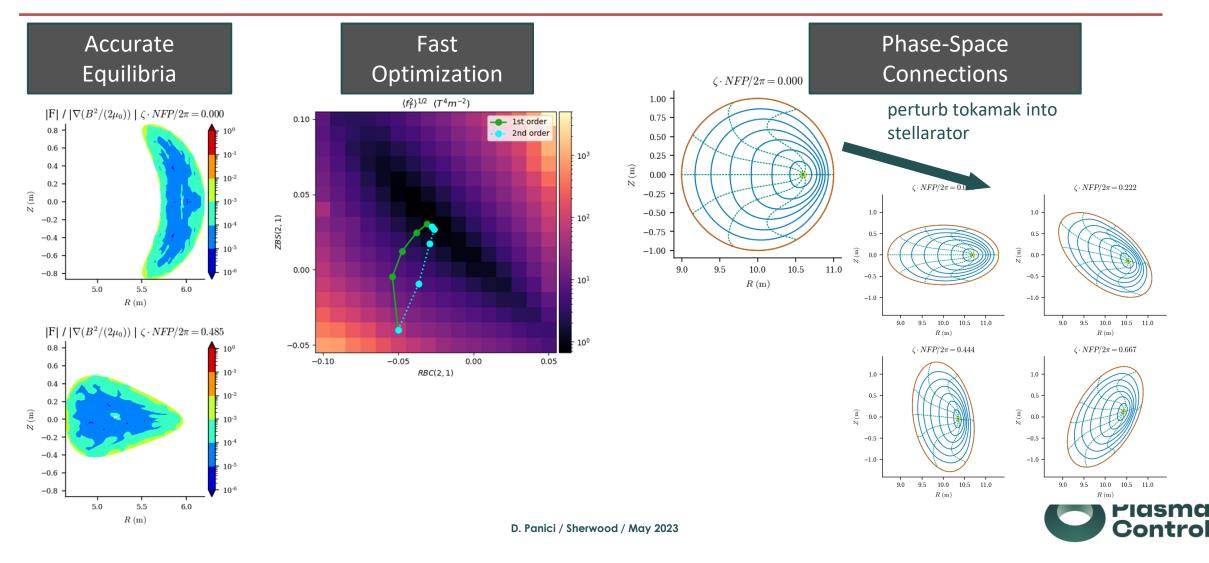
Stellarator Phase Space Exploration with DESC

Dario Panici¹, Daniel Dudt¹, Rory Conlin¹, Kaya Unalmis¹, Patrick Kim⁴ Eduardo Rodriguez³, Egemen Kolemen^{1,2}

¹Princeton University ²PPPL ³IPP-Greifswald ⁴University of Maryland



Stellarator Equilibrium and Optimization - DESC

• 3D Ideal MHD Equilibrium Code

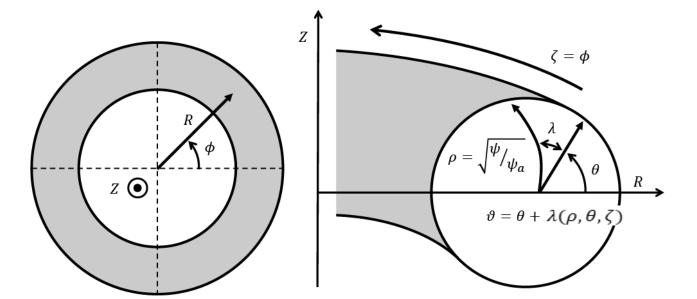
Assumes Nested Flux Surfaces

3D Spectral Representation of $\mathbf{x} = (R, \lambda, Z)$ using Fourier-Zernike Basis

- Inverse Equilibrium Problem
- Minimizes Force Error Directly

$$F = J \times B - \nabla p = 0$$

Pseudospectral Code



(Dudt and Kolemen 2020)

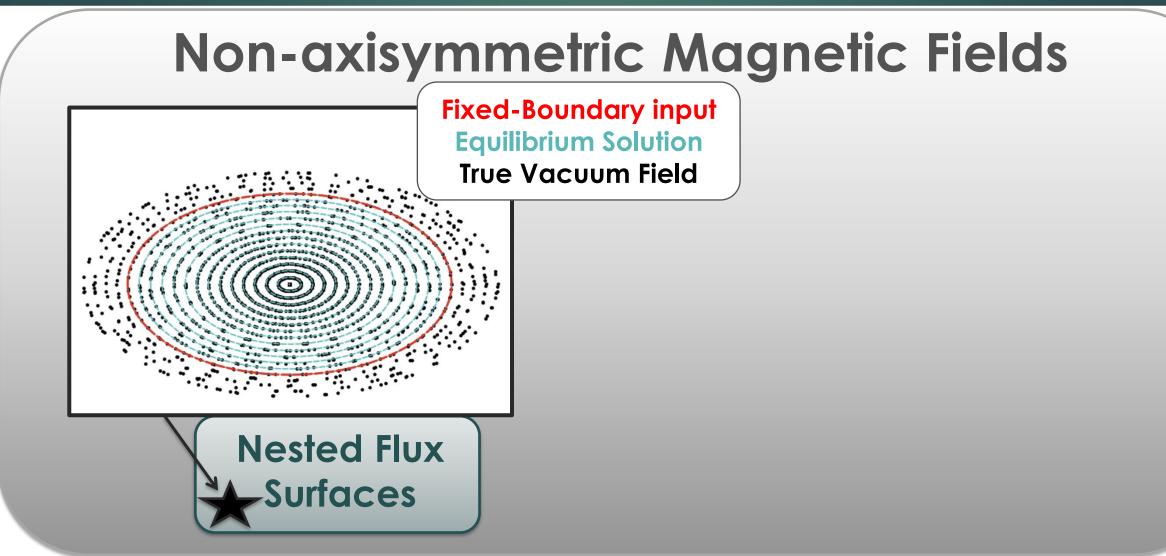
What do we want when we design a stellarator?

The most basic: A non-axisymmetric MHD equilbrium

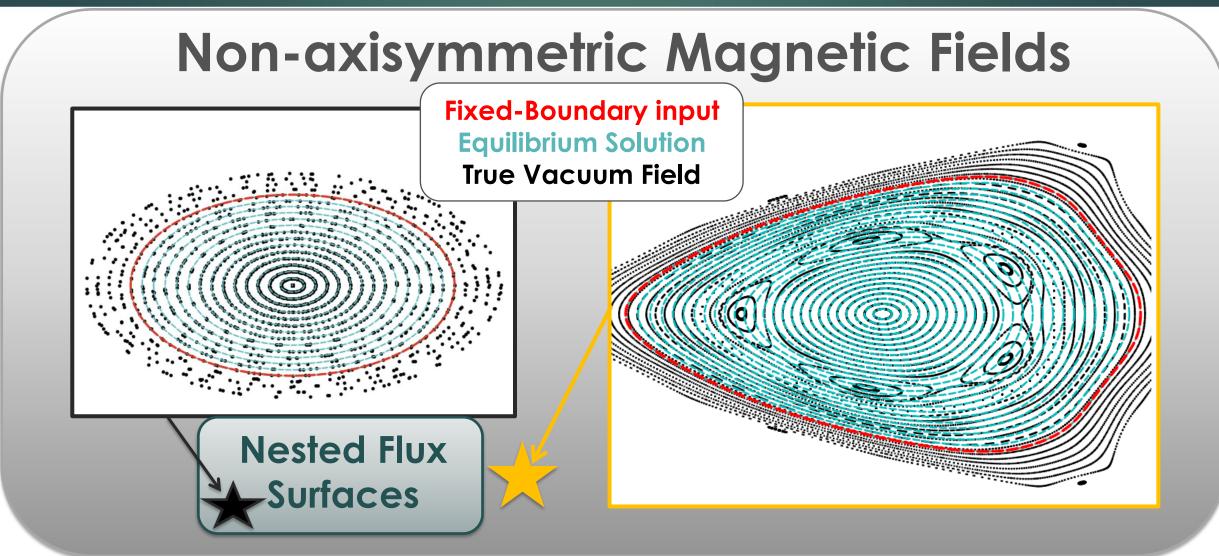
Non-axisymmetric Magnetic Fields

We want nested flux surfaces for confinement

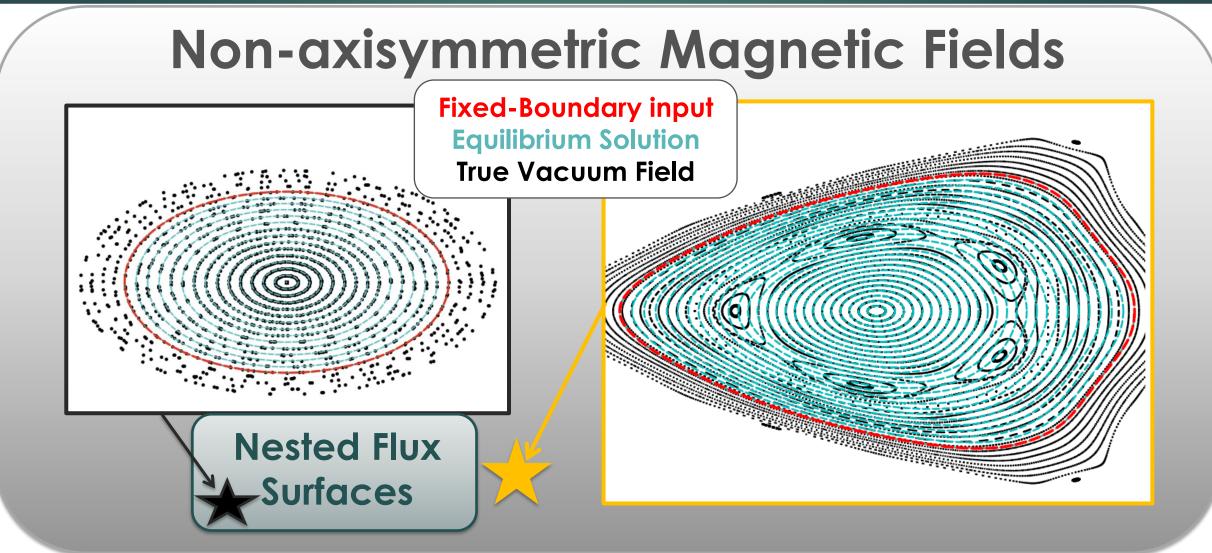
How can we know we will actually get nested flux surfaces?



How can we know we will actually get nested flux surfaces?



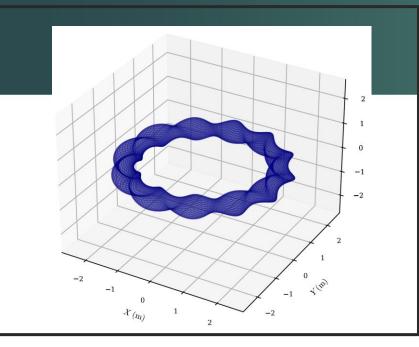
How can we know we will actually get nested flux surfaces?



Define this subspace!

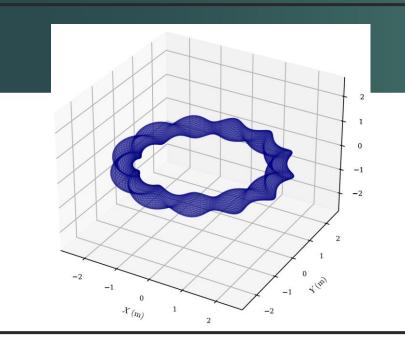
PoincareNear-AxisOmnigenous PhaseConstrainedConstraintSpace DefinitionOptimization

Poincare Boundary Condition



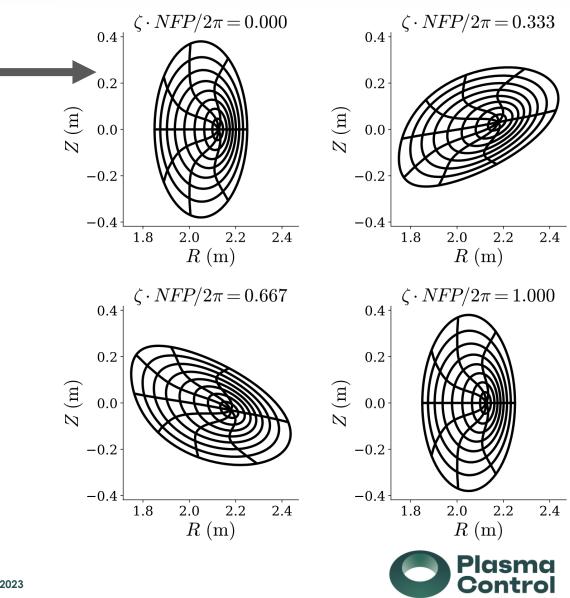
INPUT: R,Z of LCFS at ρ =1

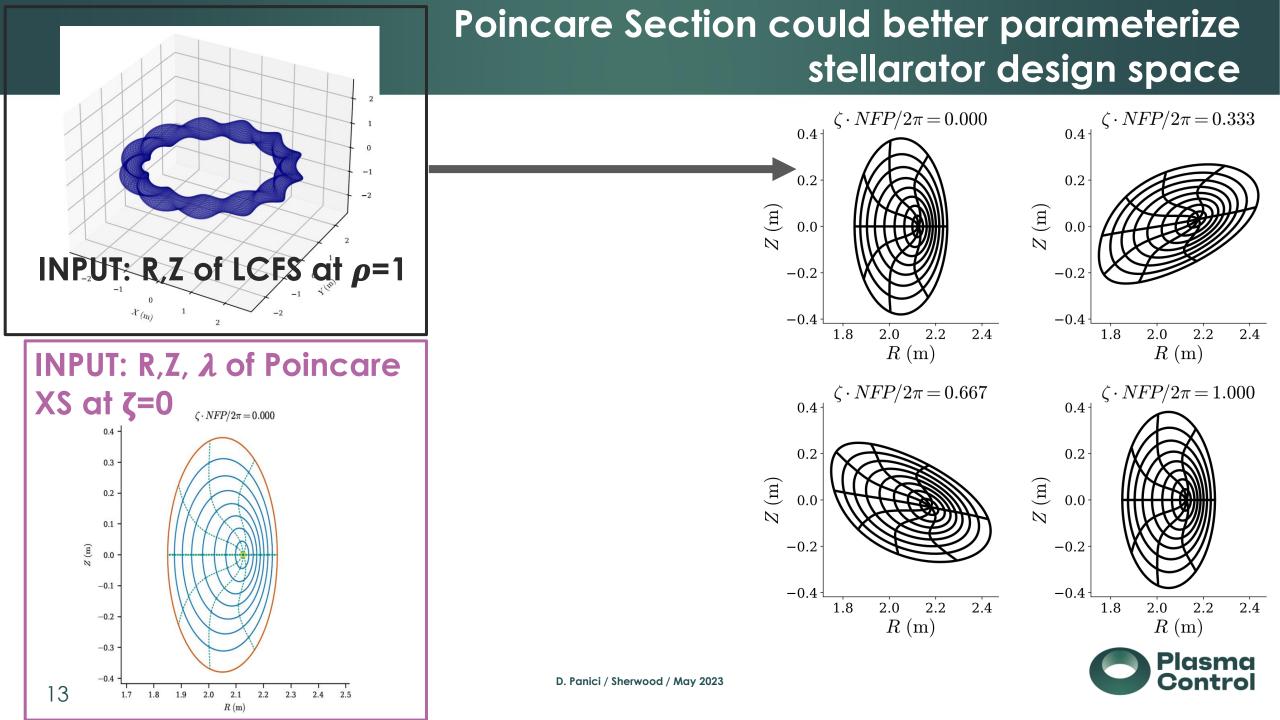
Conventional Last-Closed-Flux-Surface Boundary Condition

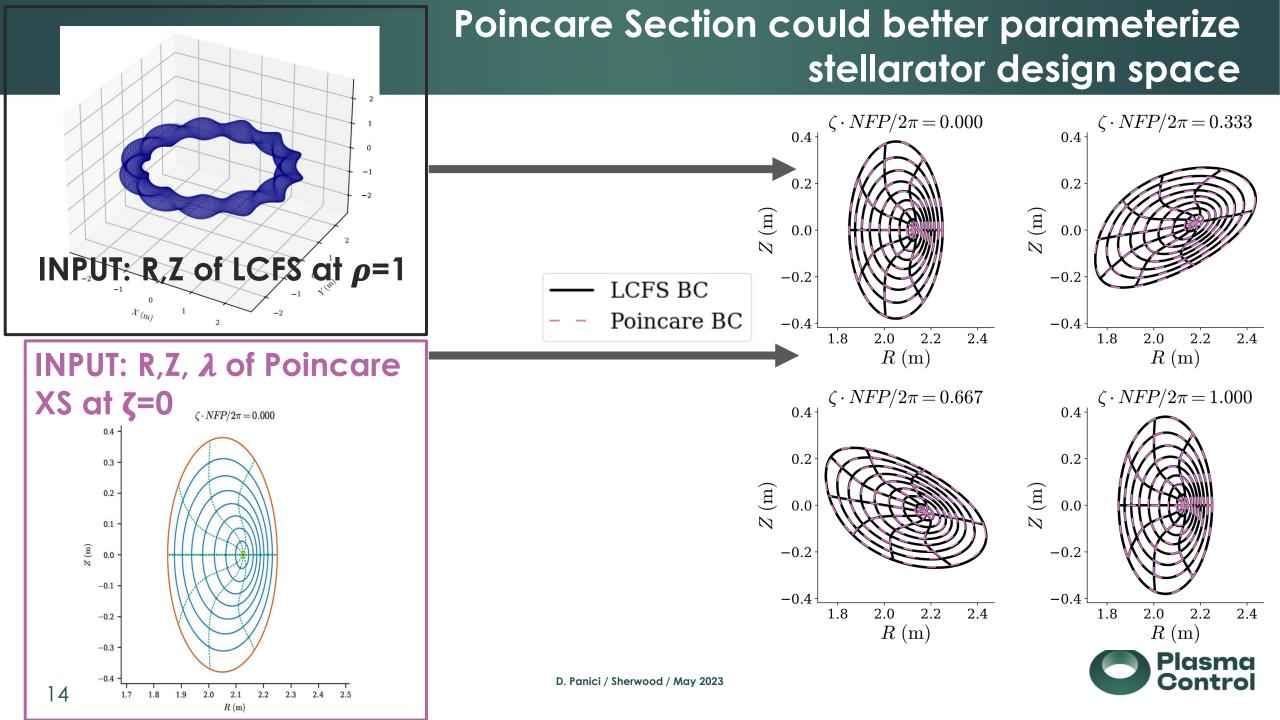


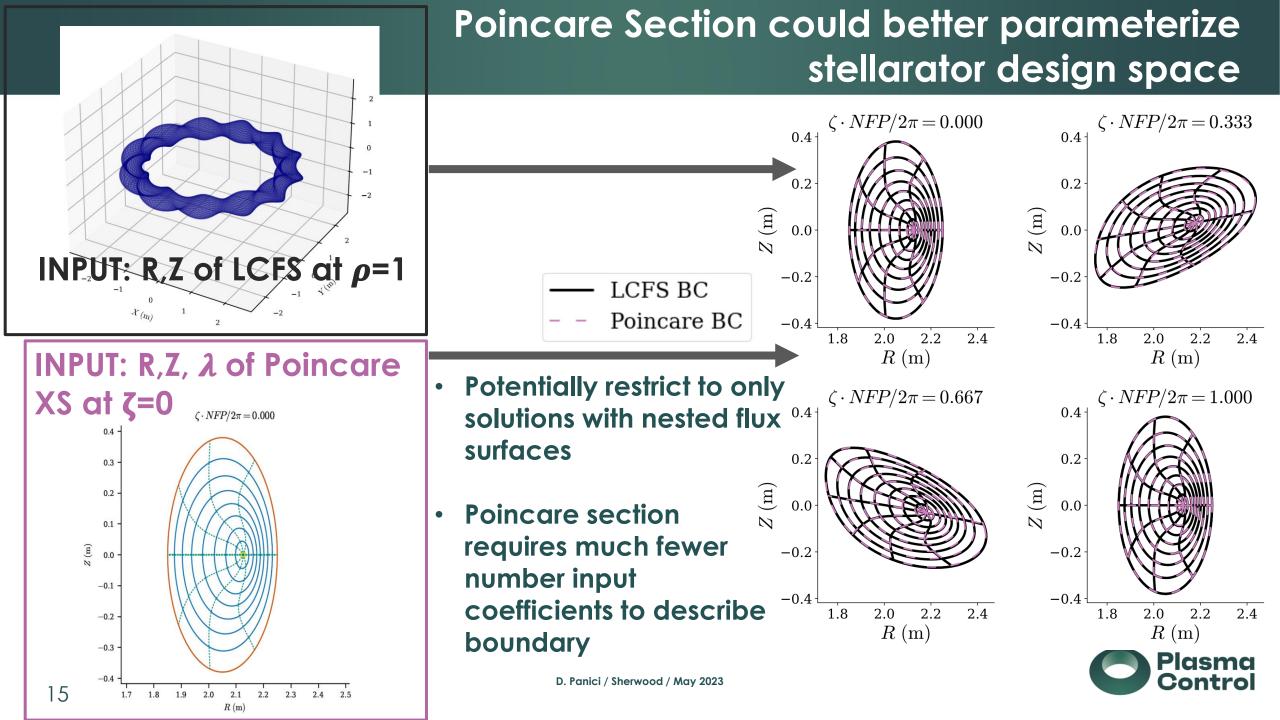
INPUT: R,Z of LCFS at ρ =1

Conventional Last-Closed-Flux-Surface Boundary Condition









Near-Axis Constrained

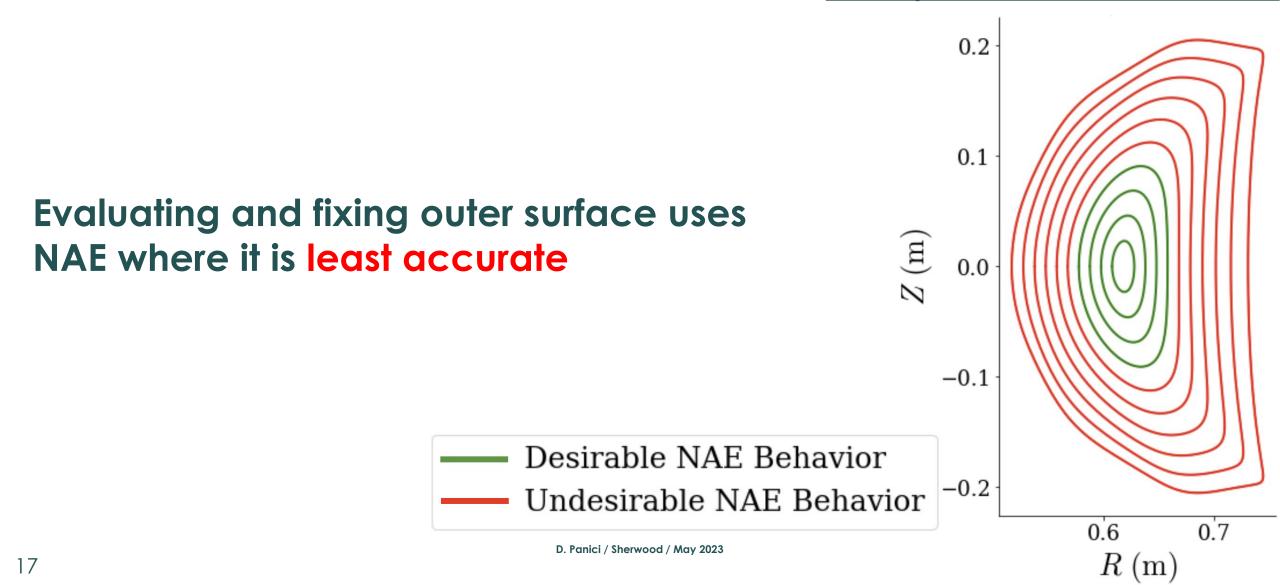
Poincare

Omnigenous Phase Space Definition **Constrained Optimization**

Near-Axis Constrained Equilibria

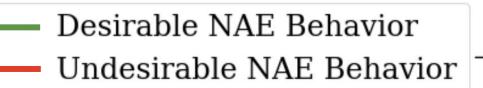
Given a NAE solution, how do we find a global MHD solution?

NAE equilibrium evaluated at r =0.1

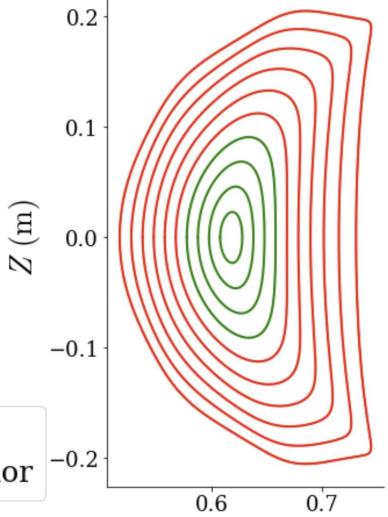


Near-Axis Expansion (NAE) Constraints in DESC (with E. Rodriguez)

- Constrain global equilibrium by NAE behavior as $ho{ o 0}$
 - Use information from NAE where it is most valid
 - Avoid singular behavior present when evaluating at large r
- Map NAE coefficients to Fourier-Zernike modes of DESC to fix $O(\rho^0)$ (axis) and $O(\rho^1)$ behavior



D. Panici / Sherwood / May 2023



R(m)

NAE equilibrium evaluated at r =0.1

$O(\rho^0)$ (axis) Constraint in DESC

Given a NAE axis as Fourier series in cylindrical toroidal angle ϕ :

$$R = R_0 + \sum_{n=1}^{N} (R_n^C \cos m\phi + R_n^S \sin m\phi)$$

$$Z = \sum_{n=1}^{N} (Z_n^C \cos m\phi + Z_n^S \sin m\phi)$$

There exists a simple, linear mapping to the DESC Fourier-Zernike basis:

NAE Axis Coefficients

$$R_n^{C/S} = \sum_{k=0}^{\infty} (-1)^k R_{2k,0,\pm|n|}$$
$$Z_n^{C/S} = \sum_{k=0}^{\infty} (-1)^k Z_{2k,0,\pm|n|}$$

DESC Fourier-Zernike Coefficients

$O(\rho^1)$ NAE Constraint in DESC

- Given $O(\rho)$ R,Z position flux surface from the NAE:

$$\mathbf{r} \approx \mathbf{r}_0(\phi) + \rho R_1 \hat{\mathbf{R}} + \rho Z_1 \hat{\mathbf{Z}}$$

where

 $R_1 = \mathcal{R}_{1,1}(\phi)\cos\theta + \mathcal{R}_{1,-1}(\phi)\sin\theta$

$$Z_{1} = Z_{1,1}(\phi) \cos \theta + Z_{1,-1}(\phi) \sin \theta$$

There again exists a simple, linear mapping to the DESC Fourier-Zernike basis:

NAE Coefficients

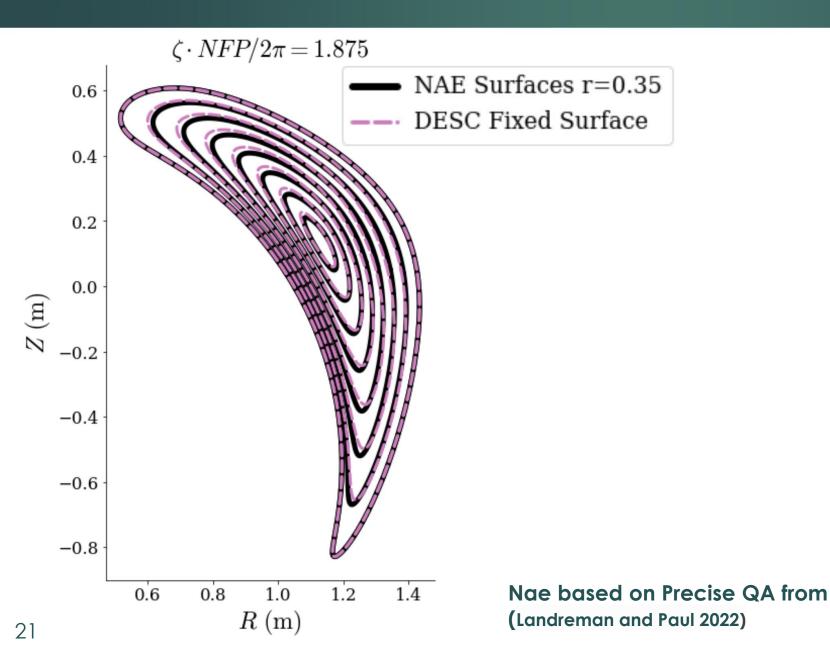
$$\mathcal{R}_{1,1,n} = -\sum_{k=1}^{M} (-1)^k k R_{2k-1,1,n},$$

$$\mathcal{R}_{1,-1,n} = -\sum_{k=1}^{M} (-1)^k k R_{2k-1,-1,n},$$

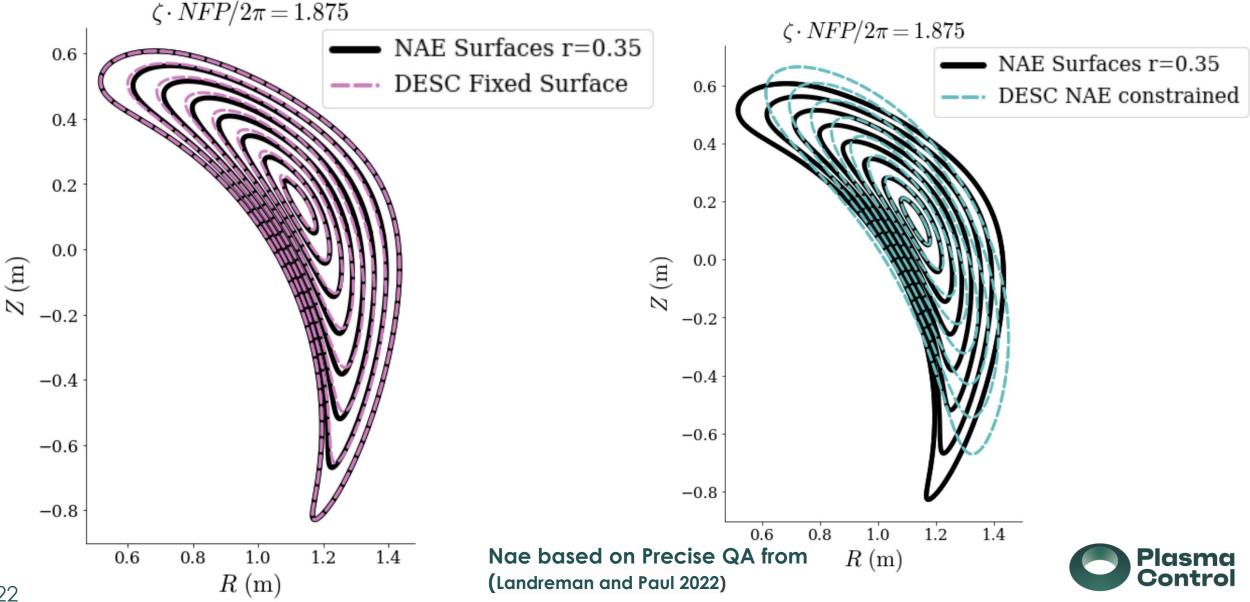
$$\mathcal{R}_{1,-1,n} = -\sum_{k=1}^{M} (-1)^k k R_{2k-1,-1,n},$$

$$\mathcal{R}_{1,-1,n} = -\sum_{k=1}^{M} (-1)^k k R_{2k-1,-1,n},$$

Fixed-Boundary Solve from NAE surface

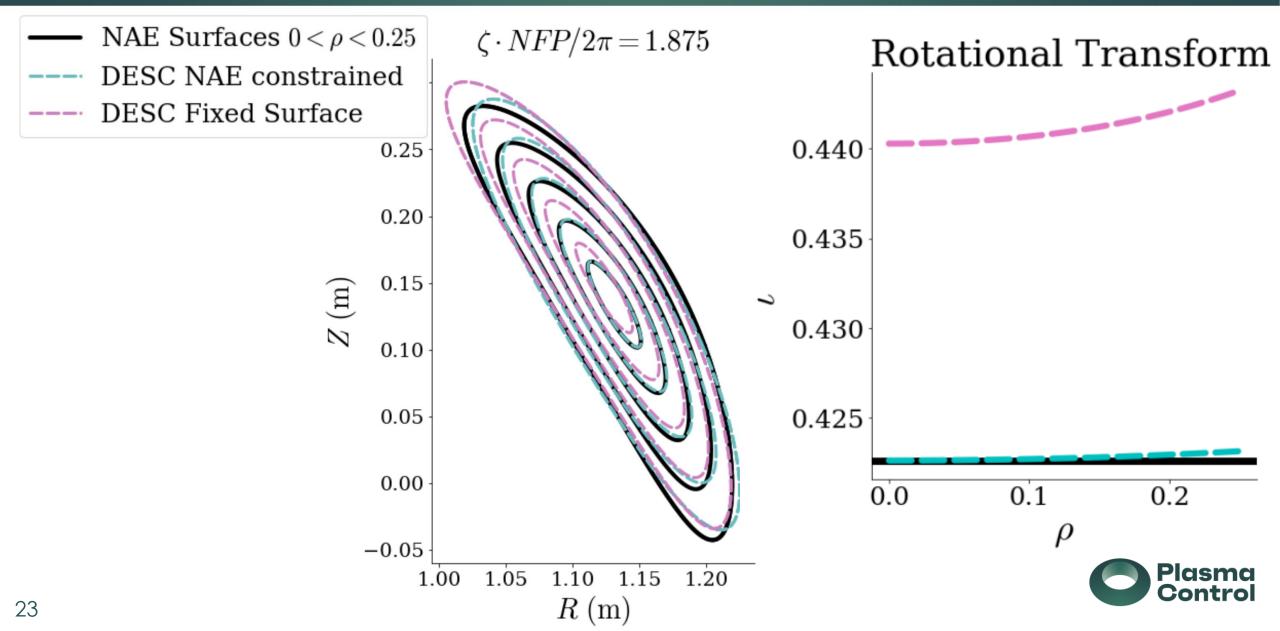


NAE Constraint in DESC - Solved Equilibrium Agrees with NAE surfaces NEAR-**AXIS, unlike Surface Solve**

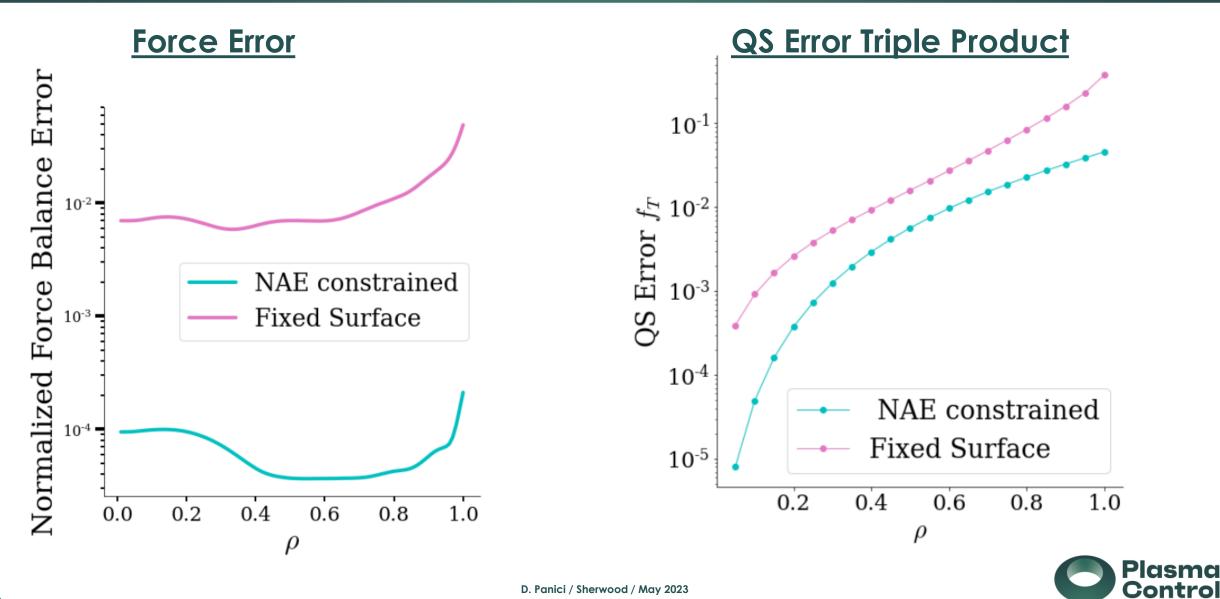


22

NAE Constraint in DESC - Solved Equilibrium Agrees with NAE surfaces NEAR-AXIS, unlike Surface Solve

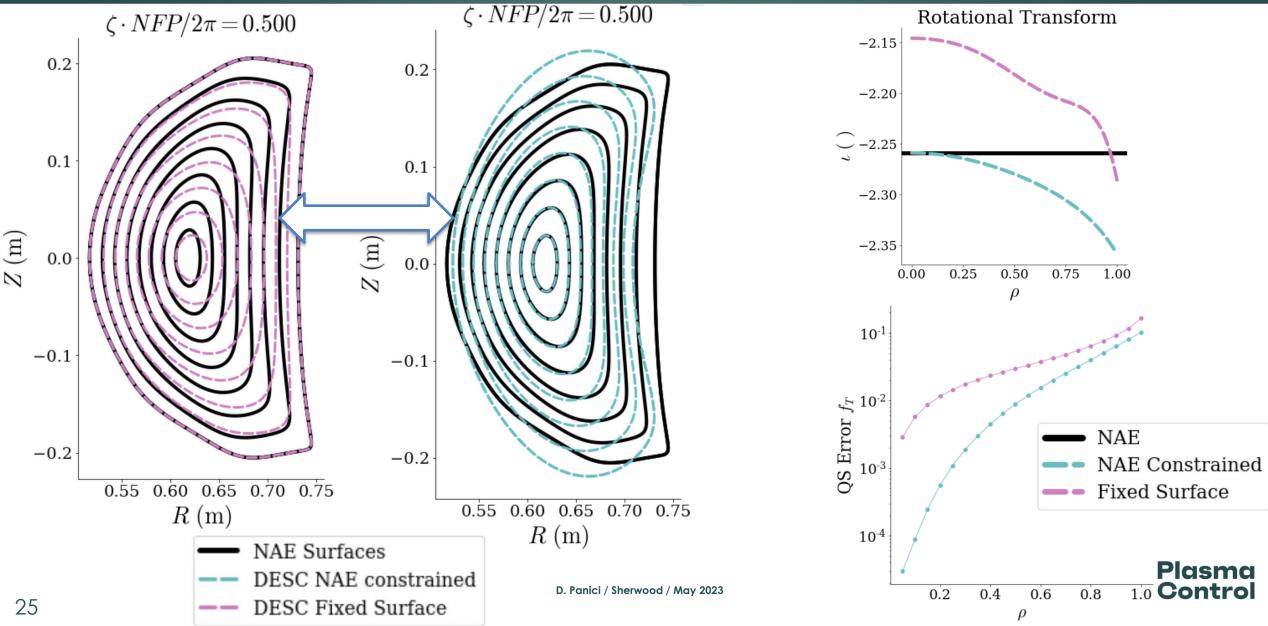


NAE Constraint in DESC - Lower Force Error and Retains QS near-axis



D. Panici / Sherwood / May 2023

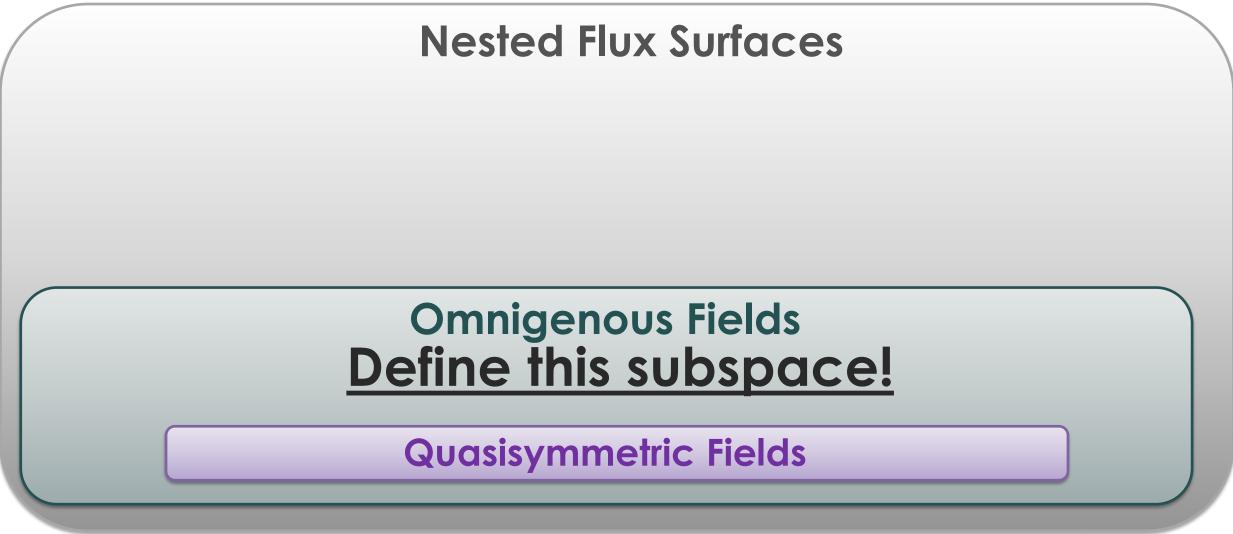
$O(\rho^1)$ Constraint in DESC - Example Solve where Fixed Surface Struggles (Example From E. Rodriguez)



We want more than just nested flux surfaces

We want more than just nested flux surfaces

We want more than just nested flux surfaces



Near-Axis Constrained **Omnigenous Phase Space Definition** **Constrained Optimization**

Omnigenous Phase Space Definition

Omnigenous magnetic fields

Particles in omnigenous magnetic fields have no net radial drifts

Conditions for Omnigenity:

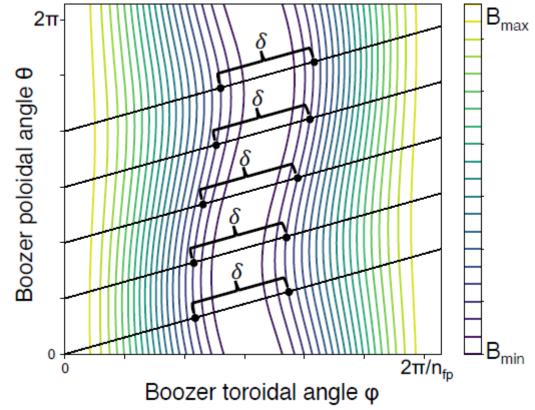
- B_{max} is a straight contour in Boozer coordinates
- Constant "bounce distance" δ between consecutive points of equal *B* on each field line α

$$\delta = \sqrt{\Delta \theta_B^2 + \Delta \zeta_B^2} \propto \Delta \zeta_B \qquad \qquad \frac{\partial \delta}{\partial \alpha} = 0$$

Model Assumptions:

- Single magnetic well per field period
- No stellarator symmetry assumption

Quasi-Isodynamic (QI) magnetic fields = omnigenous magnetic fields with constant |B| contours that close poloidally

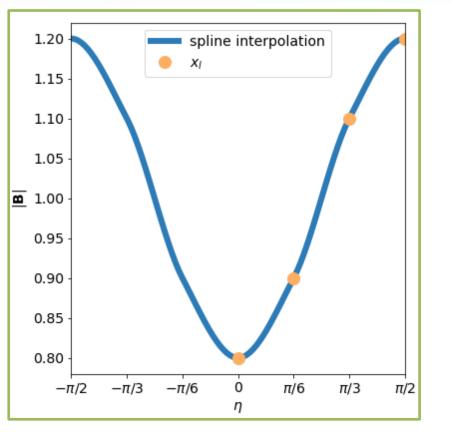


Omnigenity Optimization Through Omnigenous Phase Space Definition

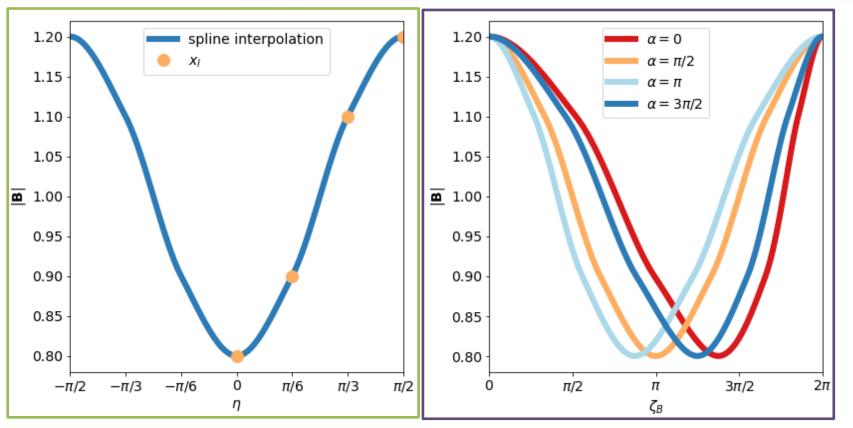
- Idea: Create a model that can describe any omnigenous field of interest
- Then, in optimization we can penalize the difference between the target omnigenous field and the equilibrium's field

 $\boldsymbol{f_{OM}} = B_{eq}(\alpha, \eta) - B_{OM}(\alpha, \eta)$

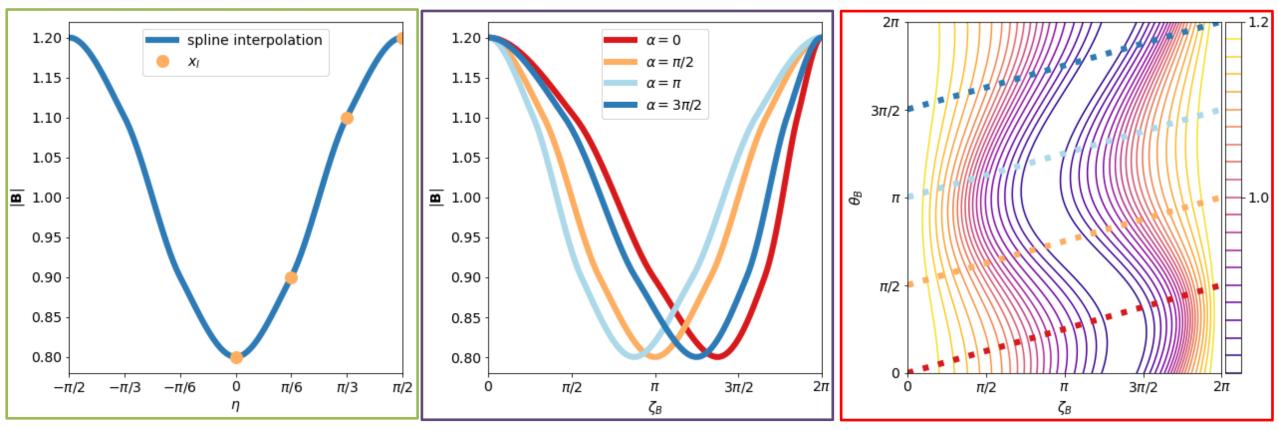
- Because we parametrize the omnigenous field, we are free to:
 - Keep parametrization the same (target a specific omnigenous field)
 - Allow the parametrization to be part of the optimization (optimize for SOME omnigenous field)



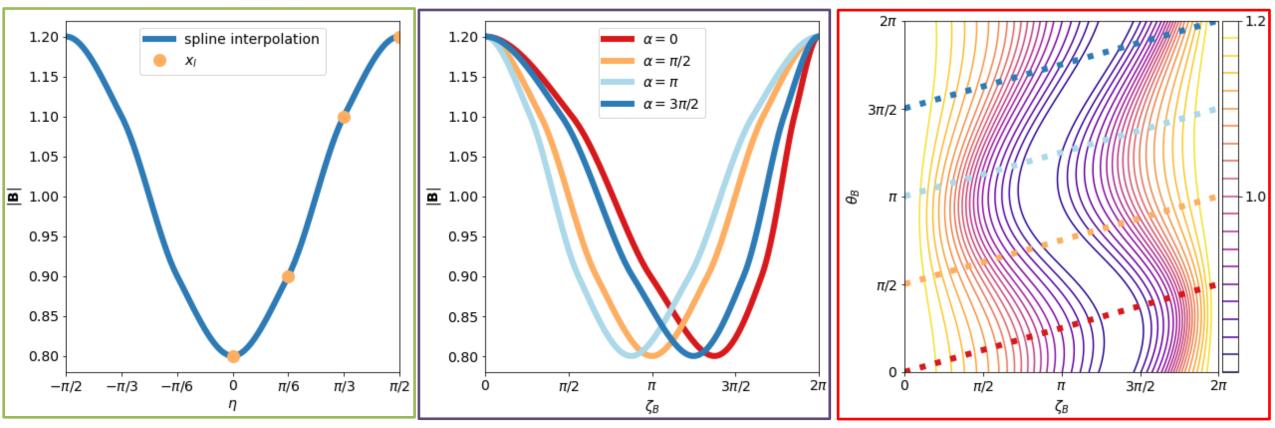
• Specify the magnetic well "shape" in computational coordinate η



- Specify the magnetic well "shape" in computational coordinate η
- Specify how the well "shifts" on different field lines with a Fourier series x_{mn} in (η, α)



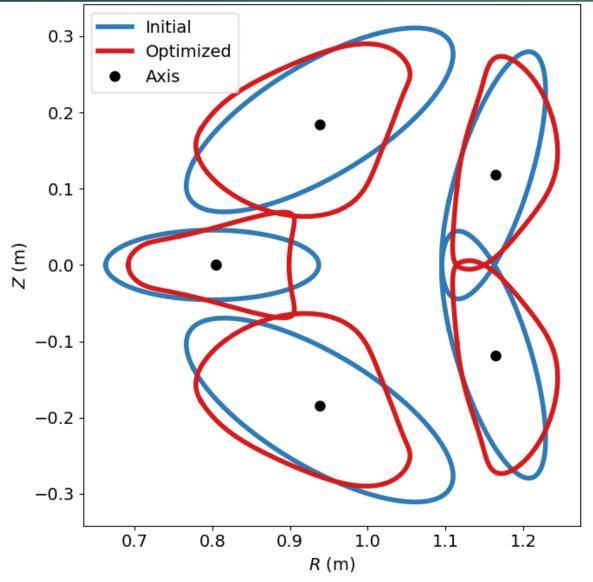
- Specify the magnetic well "shape" in computational coordinate η
- Specify how the well "shifts" on different field lines with a Fourier series x_{mn} in (η, α)
- Generate arbitrary QI magnetic field targets without prior initialization



- Specify the magnetic well "shape" in computational coordinate η
- Specify how the well "shifts" on different field lines with a Fourier series x_{mn} in (η, α)
- Generate arbitrary QI magnetic field targets without prior initialization
- Model enables scans of the QI optimization landscape

D. Panici / Sherwood / May 2023

Example 1: unconstrained QI target



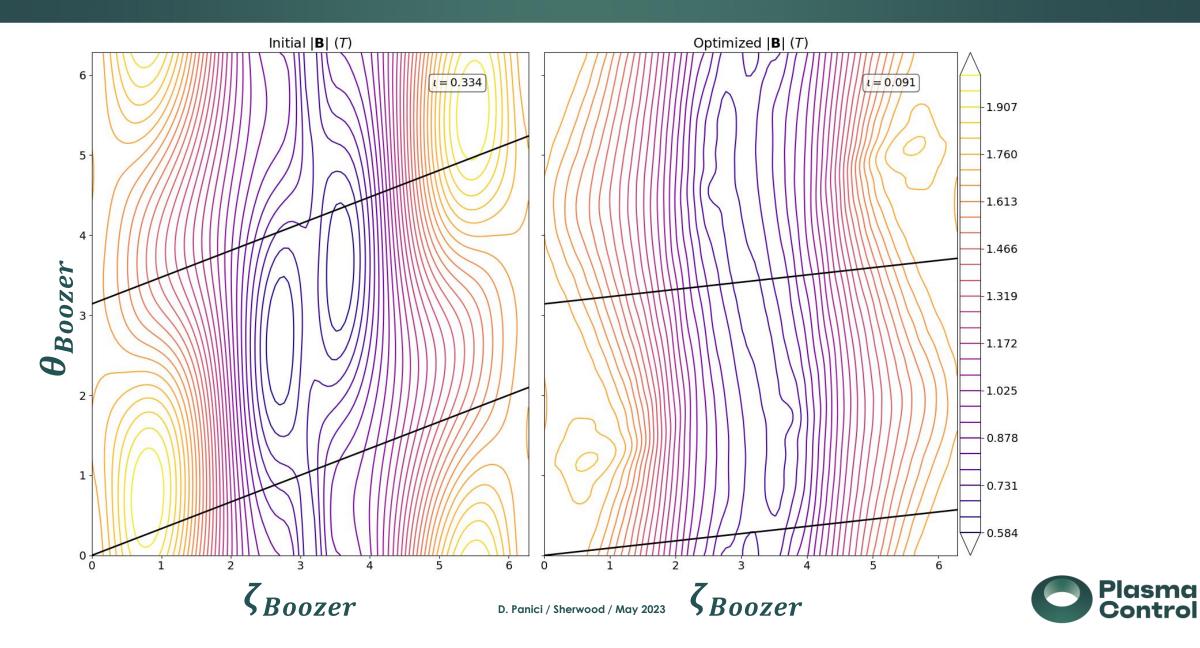
Initial equilibrium:

- Analytic QI model
- Fixing axis of equilibrium

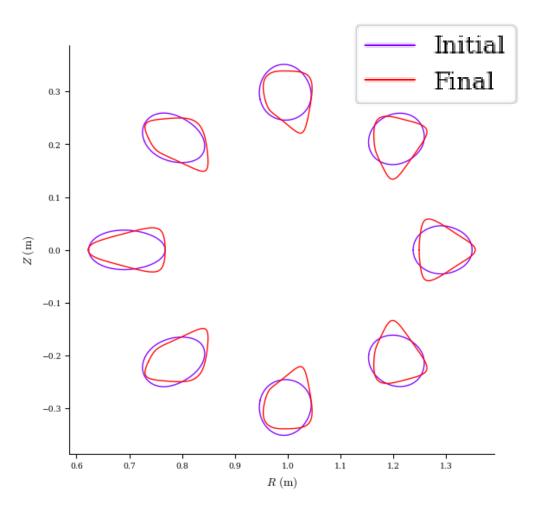
Optimization targets:

- Unconstrained QI on multiple surfaces
 (target field allowed to vary)
- Vacuum force balance

Example 1: unconstrained QI target



Example 2: Toroidally closed omnigenity



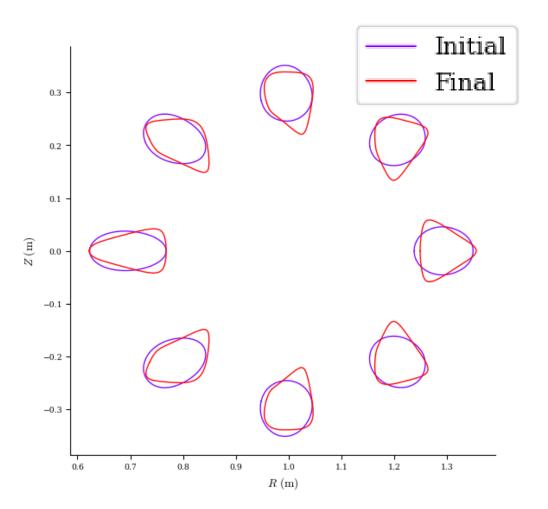
Initial equilibrium:

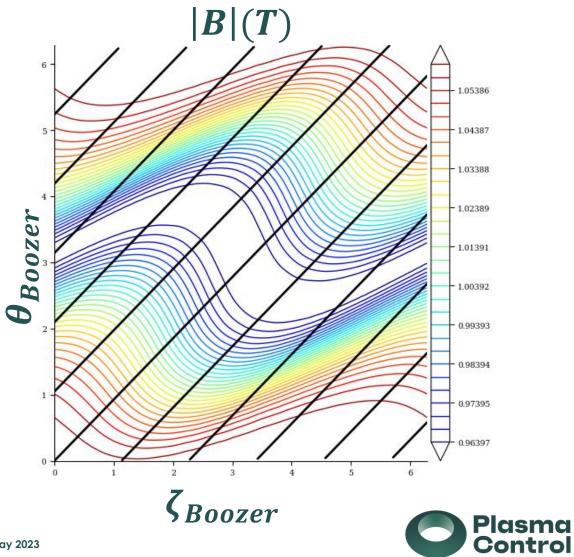
- QA NAE equilibrium from pyQSC
- Fixing axis and $O(\rho)$ of equilibrium

Optimization targets:

- Targeting specific omnigenous field with toroidally closed |B| contours on multiple surfaces
- Force balance at finite beta

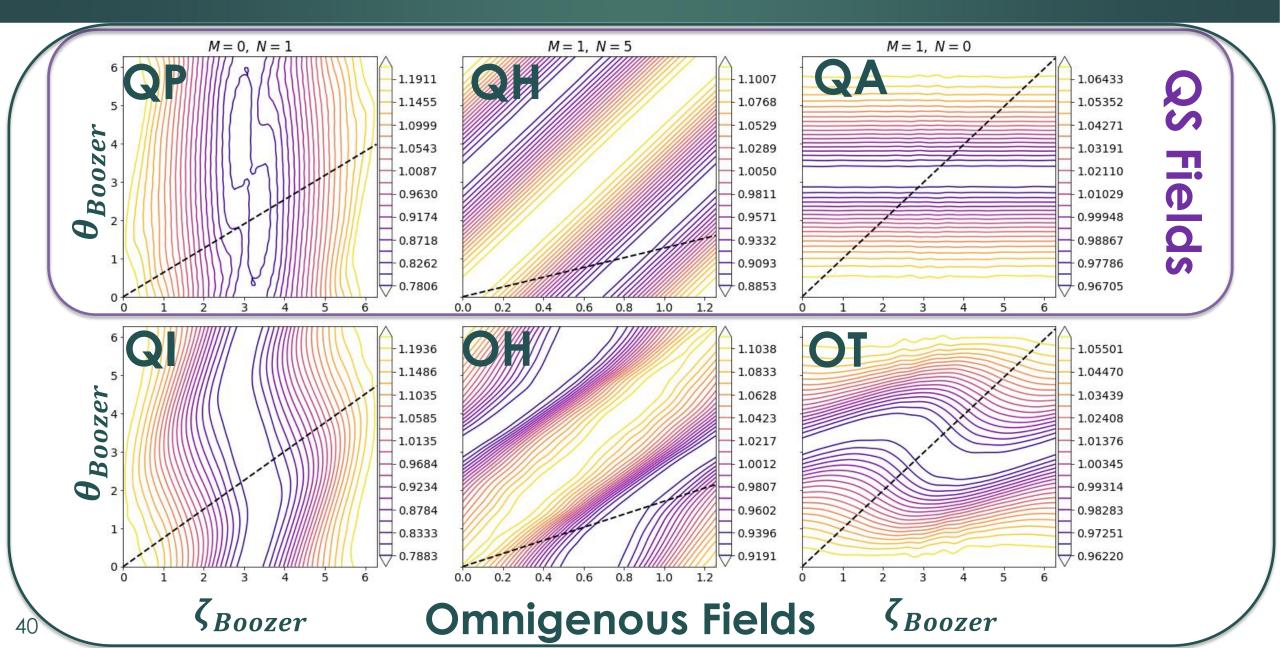
Example 2: Toroidally closed omnigenity





D. Panici / Sherwood / May 2023

DESC can find equilibria with any omnigenity type



Poincare Near-Axis Constrained **Omnigenous Phase Space Definition** **Constrained Optimization**

Constrained Optimization

Stellarator optimization is full of constraints

Geometry / Engineering:

- Aspect Ratio = 6 Ο
- Minimum coil-plasma distance Ο > 1.2m
- Maximum coil curvature < 0.6 Ο
- **Stability:**
 - Equilibrium Ο
 - Magnetic Well > 0 Ο

$$\begin{array}{c|c} & & & \\ &$$

D. Panici / Sherwood / May 2023

- **Physics:**
 - $Iota_{edge} = 5/5$ Ο
 - $\mathbf{J}_{\text{boot}} = \mathbf{0}$ 0
- **Self Consistency:**
 - \circ **J_{MHD} = J_{kinetic}**

•
$$\mathbf{p}_{\mathsf{MHD}} = \mathbf{p}_{\mathsf{kinetic}}$$

Current methods : Sum of Squares + max

$$\min_{x} f(x) \text{ subject to } \begin{array}{c} g_{eq}(x) = g_{ineq}(x) \\ g_{ineq}(x) \ge \end{array}$$

Combine all constraints into a single objective with different weights:

$$\min_{x} f(x) + w_1 [g_{eq}(x)]^2 + w_2 \max(0, g_{ineq}(x)])^2$$

Limitations:

- Hard to guess a-priori what weights should be
- Constraints are only satisfied as $w \rightarrow infinity$
- Leads to badly scaled problem
- Non-smooth due to max term

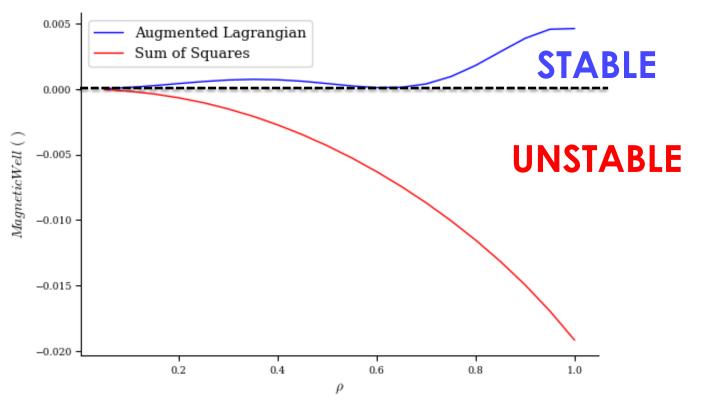
Combination of traditional Lagrangian + quadratic penalty

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^T \mathbf{g}(x) + \mu g^2(x)$$

- Smooth function
- Systematic way exists to increase penalty -> remove guesswork of weights!
- Python/JAX version implemented in DESC

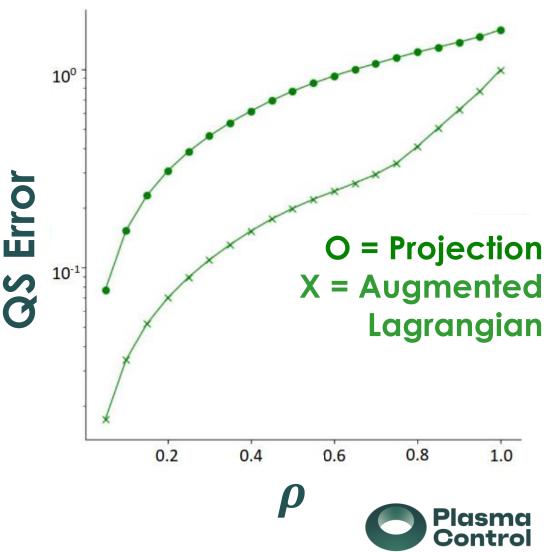
Augmented Lagrangian takes guesswork out of penalty terms

- Simple quadratic penalty fails to give stable equilibrium, even for large values of weight
- Instead applying inequality constraint w/ augmented Langrangian gives magnetic well > 0



Augmented Lagrangian approach allows better solutions to be found

- Conventional projection method re-solves from boundary at each step, to enforce force balance
- Augmented Lagrangian systematically varies weighting of constraints vs objective to improve QS
 - Allows it to achieve better final result, without need for guesswork



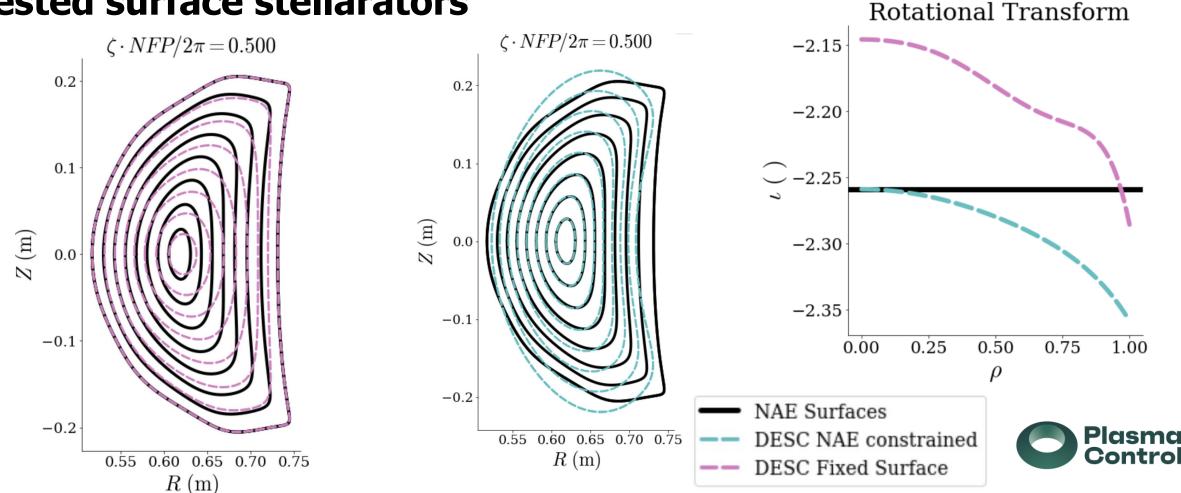
PoincareNear-AxisOmnigenous PhaseConstrainedConstrainedSpace DefinitionOptimization

Summary

DESC Offers Unique Approaches to Stellarator Optimization

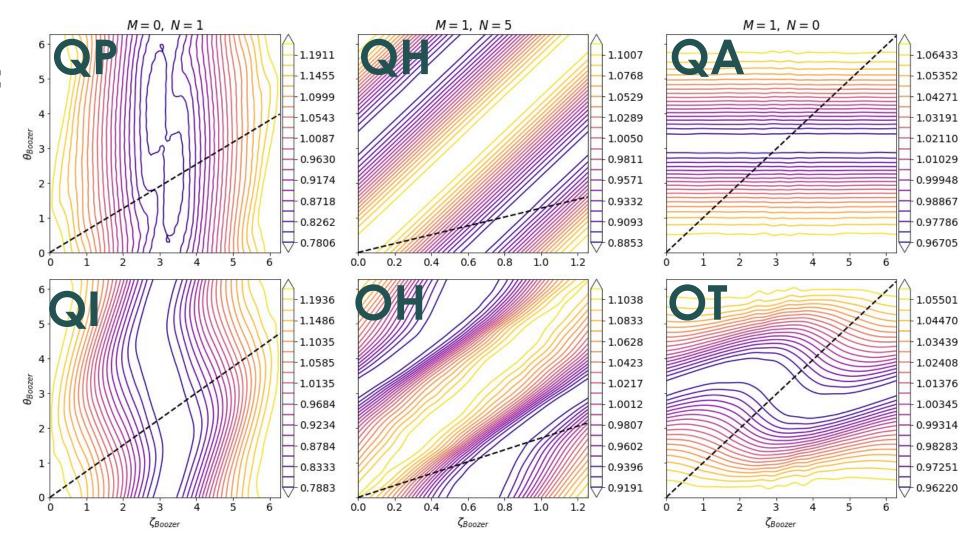
Poincare and NAE-Constrained Equilibria offer new ways to explore phase space of nested surface stellarators

48



DESC Offers Unique Approaches to Stellarator Optimization

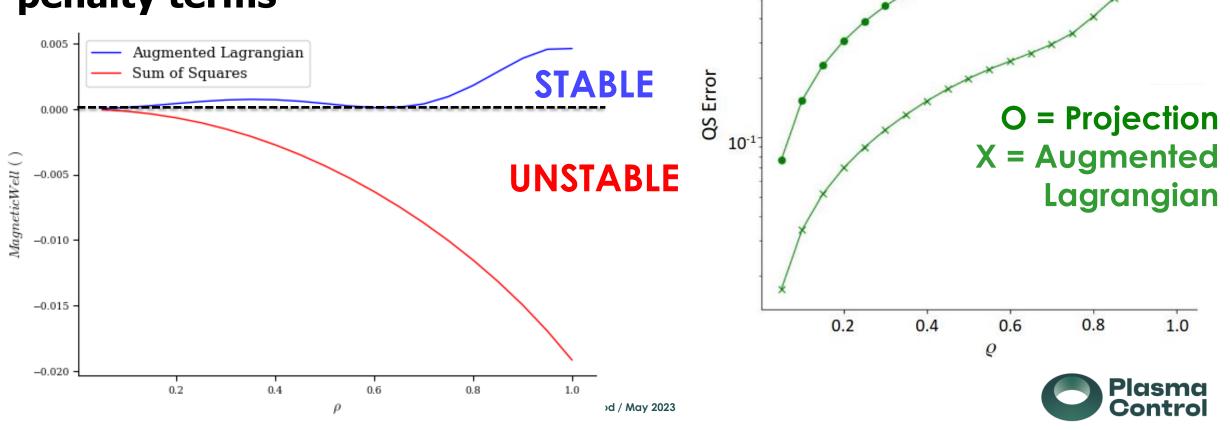
Omnigenous field phase space model allows systematic exploration of the space of omnigenous stellarators



DESC Offers Unique Approaches to Stellarator Optimization

 Proper Constrained Optimization in DESC can obtain better solutions and eliminates the need for guesswork of ^{10°} penalty terms

50



Software

- **Open-source repository:** https://github.com/PlasmaControl/DESC
- **Python package:** pip install desc-opt

Papers

- The DESC Stellarator Code Suite Part I
- The DESC Stellarator Code Suite Part II
- The DESC Stellarator Code Suite Part III

https://arxiv.org/abs/2203.17173 https://arxiv.org/abs/2203.15927 https://arxiv.org/abs/2204.00078

The Plasma Control group is recruiting graduate students and post-docs! Contact Egemen Kolemen: <u>ekolemen@pppl.gov</u>

