# Near-Axis Constrained Equilibria with the DESC code

Dario Panici, Daniel Dudt, Rory Conlin, Eduardo Rodriguez, Egemen Kolemen



#### **Near-Axis-Expansion Constrained Equilibria in DESC**



## Ideal MHD

## **Inverse Equilibrium**



## **Stellarator Equilibrium - DESC**

$$F = J \times B - \nabla p = 0$$



• 3D Ideal MHD Equilibrium Code

(Dudt and Kolemen 2020)

- Assumes Nested Flux Surfaces
- Inverse Equilibrium Problem
- Minimizes Force Error Directly
- Pseudospectral Code

3D Spectral Representation of  $\mathbf{x} = (R, \lambda, Z)$  using Fourier-Zernike Basis



#### **DESC - Fourier-Zernike Spectral Basis**

$$R(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} R_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$\lambda(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} \lambda_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{l}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{F}^{n}(\zeta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{Z}_{lm}^{m}(\rho, \theta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{Z}_{lm}^{m}(\rho, \theta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{Z}_{lm}^{m}(\rho, \theta)$$

$$Z(\rho, \theta, \zeta) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{Z}_{lm}^{m}(\rho, \theta)$$

$$Z(\rho, \xi) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{Z}_{lm}^{m}(\rho, \theta)$$

$$Z(\rho, \xi) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta) \mathcal{Z}_{lm}^{m}(\rho, \theta)$$

$$Z(\rho, \xi) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn} \mathcal{Z}_{lm}^{m}(\rho, \theta)$$

$$Z(\rho, \xi) = \sum_{m=-M, n=-N, l=0}^{M, N, L} Z_{lmn}^{m}(\rho,$$

## DESC Allows Flexible Constraints when Defining Equilibrium Problem - Fixed $\rho$ =1 Boundary



#### Near-Axis Expansion (NAE) Constraints in DESC (with E. Rodriguez)

- Idea is to constrain the global equilibrium to have NAE behavior as  $\rho \rightarrow 0$ 
  - only use information from NAE where it is most valid
  - Avoid singular behavior present when evaluating at large r
- Map NAE coefficients to Fourier-Zernike modes of DESC to fix O(ρ<sup>0</sup>) (axis), O(ρ<sup>1</sup>), O(ρ<sup>2</sup>) behavior



D. Panici / December 2023

#### NAE axis in pyQSC given as Fourier series in cylindrical toroidal angle $\phi$ :

$$R = R_0 + \sum_{n=1}^{N} (R_n^C \cos m\phi + R_n^S \sin m\phi) \qquad \qquad Z = \sum_{n=1}^{N} (Z_n^C \cos m\phi + Z_n^S \sin m\phi)$$

Constraint in DESC representation is simple: Evaluate DESC R( $\rho, \theta, \phi$ ), Z( $\rho, \theta, \phi$ ) at  $\rho = 0$  and match terms:

NAE Axis  
Coefficients
$$R_n^{C/S} = \sum_{k=0}^{\infty} (-1)^k R_{2k,0,\pm|n|}$$
DESC Fourier-  
Zernike  
Coefficients $Z_n^{C/S} = \sum_{k=0}^{\infty} (-1)^k Z_{2k,0,\pm|n|}$ DESC Fourier-  
Zernike  
Coefficients



### $O(\rho^1)$ NAE Constraint in DESC

- After a short geometric derivation, one can derive (up to  $O(\rho)$ ) the R,Z position of a point on a flux surface from the NAE in terms of the cylindrical angle

$$\mathbf{r} \approx \mathbf{r}_0(\phi) + \rho R_1 \hat{\mathbf{R}} + \rho Z_1 \hat{\mathbf{Z}}$$

where

 $R_{1} = \mathcal{R}_{1,1}(\phi) \cos \theta + \mathcal{R}_{1,-1}(\phi) \sin \theta \qquad Z_{1} = Z_{1,1}(\phi) \cos \theta + Z_{1,-1}(\phi) \sin \theta$ 

- And the coefficients are functions of the NAE X,Y coefficients and the Frenet-Serret basis vectors

- Then, equating the  $O(\rho)$  coefficients in the DESC Fourier-Zernike basis with the above expressions yields:

(Identical expressions for Z as well)  
NAE  
Coefficients
$$\mathcal{R}_{1,1,n} = -\sum_{k=1}^{M} (-1)^k k R_{2k-1,1,n},$$

$$\mathcal{R}_{1,-1,n} = -\sum_{k=1}^{M} (-1)^k k R_{2k-1,-1,n},$$
DESC Fourier-Zernike  
Coefficients



| Magnetic Axis<br>and Near-Axis<br>Flux Surfaces | On-axis Rotational<br>Transform                                         | On-axis Poloidal<br>Angle ( $\theta = \theta_B$ ) |
|-------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|
|                                                 | Near-Axis Confinement<br>( $f_B$ for QS, $\epsilon_{eff}^{3/2}$ for QI) | On-axis Magnetic<br>Field Magnitude   <i>B</i>    |

# Will show 3 examples: QA, QH, and a QI NAE-constrained equilibrium



#### QA O( $\rho^1$ ) NAE-constrained Equilibrium



#### QH O( $\rho^1$ ) NAE-constrained Equilibrium



#### QI O( $\rho^1$ ) NAE-constrained Equilibrium



#### **Example Python Code for NAE-Constrained Equilibria in DESC – Simple!**



# get constraints on axis and O(r) coefficients
# to pass to eq.solve using utility function
cs = get\_NAE\_constraints(desc\_eq, qsc, order=1)

# solve NAE-constrained equilibrium
desc\_eq.solve(objective="force", constraints=cs);

Tutorial on DESC documentation website: desc-docs.readthedocs.io



Plasma Control

D. Panici / December 2023

#### QA O( $\rho^2$ ) NAE-constrained Equilibrium



#### Fitting NAE Behavior with Toroidal Fourier Series – $O(\rho^1)$





**QA NAE behavior simplest to describe** 

QI NAE behavior very difficult to describe with cylindrical angle!



#### Fitting NAE Behavior with Toroidal Fourier Series – O( $\rho^2$ )



 $R_2 = \mathcal{R}_{2,0}(\phi) + \mathcal{R}_{2,2}(\phi)\cos 2\theta + \mathcal{R}_{2,-2}(\phi)\sin 2\theta \quad \bigcirc \mathsf{Plasma}_{\mathsf{Control}}$ 

# (REG)Coil Optimization In DESC



#### **REGCOIL Algorithm**

 Using surface current distributions on a specified winding is an efficient approach to the coil-finding problem<sup>4,5</sup>

$$\begin{array}{c} \pmb{K} = \pmb{n} \times \nabla \Phi & \Phi(\theta',\zeta') = \Phi_{sv}(\theta',\zeta') + \frac{G\zeta'}{2\pi} + \frac{I\theta'}{2\pi} \\ \hline \\ \text{Surface} \\ \text{Current} \\ \text{Density} \end{array} \begin{array}{c} \text{Unit Normal} \\ \text{to Winding} \\ \text{Surface} \end{array} \end{array} \qquad \begin{array}{c} \Phi(\theta',\zeta') = \Phi_{sv}(\theta',\zeta') + \frac{G\zeta'}{2\pi} + \frac{I\theta'}{2\pi} \\ \hline \\ \hline \\ \text{Current} \\ \text{Potential} \end{array} \qquad \begin{array}{c} \text{Current} \\ \text{Potential} \end{array} \end{array} \begin{array}{c} \text{Surface Net} \\ \hline \\ \text{Foloidal Current} \end{array} \end{array}$$

 Then minimization of quadratic flux becomes a linear (in Φ<sub>sv</sub>) least-squares problem, after expanding in Fourier Series (I,G, and other terms are known)

$$\chi_B^2 = \int \mathrm{d}^2 a \ B_{\text{normal}}^2 \qquad \Phi_{sv} = \sum_{m,n} \Phi_{sv}^{mn} \sin(m\theta' - n\zeta') \qquad B_n = B_n^{ext} + B_n^{pl} + B_n^{GI} + A\Phi_{sv}^{mn}$$

 However, can lead to poor solutions without regularization -> REGCOIL adds regularization to the problem

$$\chi_K^2 = \int \mathrm{d}^2 a' \ K(\theta',\zeta')^2$$



D. Panici / December 2023

#### Helical Coilset in DESC





**Helical Coilset** 

#### **REGCOIL Algorithm implemented in DESC to find** surface currents

## Helical coil-cutting capabilities also implemented to discretize into helical coils



D. Panici / December 2023

#### **Example Python Code to create Helical Coilset**

```
# load equilibrium, this case is a simple vacuum rotating ellipse
eqname = "./tests/inputs/ellNFP4_init_smallish.h5"
eq = load(eqname)
```

# get the surface current which minimizes Bn with REGCOIL algorithm

```
(surface_current_field, _, _, _, _,) = run_regcoil(
```

```
eqname=eq,
```

# resolutions of plasma surface grid upon which Bn is minimized

```
eval grid M=20, eval grid N=20,
```

# resolutions of source grid for calculating Bn

source\_grid\_M=40, source\_grid\_N=80,

alpha=1e-15, # regularization parameter

# ratio of I/G, 0 for modular, integer for helical coils
helicity ratio=-1)

# discretize into helical coils using utility function  $\theta^{0} = 2 - 4$ numCoils = 15 # we want 15 helical coils coilset2 = find\_helical\_coils(surface\_current\_field, eqname, desired numcoils=numCoils)





Plasr

#### **Example Python Code to create Modular Coilset**

```
# load equilibrium, this case is a simple vacuum rotating ellips
eqname = "rotating ellipse 5 aspect ratio.h5"
eq = load(eqname)
winding surf= load("rotating ellipse wind surf.h5")
# get the surface current which minimizes Bn with REGCOIL alg
(surface_current_field, _, _, _, _,) = run_regcoil(
    eqname=eq, basis M=16, basis N=16,
# resolutions of plasma surface grid upon which Bn is minimized
    eval grid M=60, eval grid N=60,
   # resolutions of source grid for calculating Bn
    source grid M=100, source grid N=100,
    alpha=1e-16, # regularization parameter
    # ratio of I/G, 0 for modular, integer for helical coils
    helicity ratio=0, winding surf = winding surf)
```

# discretize into modular coils using utility function
numCoils = 60 # we want 60 modular coils, (15 per field period)
coilset2 = find\_modular\_coils(surface\_current\_field,

eqname, desirednumcoils=numCoils) D. Panici / December 2023 (m)

1.4

1.2

1.0

0.6

0.4

0.2

0.0

J.0.8

Bnormal from coilset

0.045

-0.030

-0.015

0.000

-0.015

-0.030

-0.045

22

- NAE Constrained Equilibrium Solve
  - Can offer connection between rich NAE+QS theory and global solutions
  - Allow global solutions to be found matching NAE axes that otherwise could not be found traditionally
  - Verified against pyQSC and pyQIC for O(rho) constraints
  - Ongoing verification of 2<sup>nd</sup> order constraints
    - Can allow geometrically constraining on-axis Mercier stability, for example
  - Can be used with DESC constrained optimization
  - Available to use now in main DESC code
- DESC Coil Optimization
  - **REGCOIL** algorithm implemented in Python
  - Modular and Helical Coil-cutting algorithms implemented
  - Written in JAX, so can be used with optimization, combined with other objectives
    - Single-stage optimization?
  - Will be available soon in main DESC code



### Backup



#### $O(\rho^0)$ (axis) Constraint in DESC - Example Solve





#### **Physical Insights Yield Constraints on XS or near Axis**

#### Axis + Near-Axis Behavior

Near-Axis Expansion (NAE) yields what asymptotic behavior of equilibrium should be near the axis, and what the <u>axis shape</u> should be



#### **Poincare Section**

Desire to avoid magnetic islands, and decoupling poloidal and toroidal resolution



#### **Closer look at flux surfaces near axis for Precise QA**



#### **Closer look at flux surfaces near axis for difficult NAE**

```
rc = [1, 0.426, 0.044, -6.3646383583351e-11, 2.851584586653665e-05, 3.892992983405039e-08]
```

```
zs = [0.0, 0.4110168175146285, 0.04335427796015756,
6.530936323433338e-05, 1.3623898672936873e-05,
1.1620514629503932e-05]
```

```
etabar=1.64209358
B2c = 0.11293987662545873
B0=1
nfp = 4
```

```
qsc = Qsc(rc=rc, zs=zs, B0=B0, nfp=nfp, I2=0, B2c = B2c,
etabar=etabar, order = "r1", nphi = 201)
```

```
desc_eq= Equilibrium.from_near_axis(qsc,r=
r,L=9,M=9,N=N,ntheta=ntheta)
```



D. Panici / December 2023

## Closer look at LCFS for difficult NAE

```
rc = [1, 0.426, 0.044, -6.3646383583351e-11,
2.851584586653665e-05, 3.892992983405039e-08]
```

```
zs = [0.0, 0.4110168175146285, 0.04335427796015756,
6.530936323433338e-05, 1.3623898672936873e-05,
1.1620514629503932e-05]
```

```
etabar=1.64209358
B2c = 0.11293987662545873
B0=1
nfp = 4
```

```
qsc = Qsc(rc=rc, zs=zs, B0=B0, nfp=nfp, I2=0, B2c = B2c,
etabar=etabar, order = "r1", nphi = 201)
```

```
desc_eq= Equilibrium.from_near_axis(qsc,r=
r,L=9,M=9,N=N,ntheta=ntheta)
```





#### **Near-Axis Expansion**

Quantities are expanded in form

 $B_1(\vartheta,\varphi) = B_{1s}(\varphi)\sin(\vartheta) + B_{1c}(\varphi)\cos(\vartheta),$  $B_2(\vartheta,\varphi) = B_{20}(\varphi) + B_{2s}(\varphi)\sin(2\vartheta) + B_{2c}(\varphi)\cos(2\vartheta)$ 

 $B(r,\vartheta,\varphi) = B_0(\varphi) + rB_1(\vartheta,\varphi) + r^2B_2(\vartheta,\varphi) + r^3B_3(\vartheta,\varphi) + \dots$ 

- Inputs for  $O(r^2)$  solutions
  - Axis Shape (R(phi), Z(phi))
  - $\overline{\eta} = \frac{B_{1c}}{B_0}$  Measure of magnetic field  $B = B_0 \left[ 1 + r \overline{\eta} \cos \vartheta + O(r^2) \right]$  variation
  - $\sigma_0$  Deviation from stellarator symmetry at  $\phi = 0$ 
    - Taken as 0 for most cases
  - I<sub>2</sub> Current Density on axis
  - $p_2$  Pressure near axis
  - $B_{2c}$  magnetic field  $O(r^2)$  poloidal variation



#### Outputs:

- Flux surface shapes in neighborhood of axis
- ι<sub>0</sub> rotational transform on-axis
- B<sub>20</sub> magnetic field variation on-axis

$$\boldsymbol{r}(r,\vartheta,\varphi) = \boldsymbol{r}_0(\varphi) + X(r,\vartheta,\varphi)\boldsymbol{n}(\varphi) + Y(r,\vartheta,\varphi)\boldsymbol{b}(\varphi) + Z(r,\vartheta,\varphi)\boldsymbol{t}(\varphi)$$
$$X(r,\vartheta,\varphi) = rX_1(\vartheta,\varphi) + r^2X_2(\vartheta,\varphi) + r^3X_3(\vartheta,\varphi) + \dots$$



D. Panici / December 2023

## DESC Allows Flexible Constraints when Defining Equilibrium Problem - Fixed $\rho$ =1 Boundary



#### **DESC Algorithm**



